10
Views
118
CrossRef citations to date
0
Altmetric
Research Article

The Saccharomyces cerevisiae Msh2 and Msh6 Proteins Form a Complex That Specifically Binds to Duplex Oligonucleotides Containing Mismatched DNA Base Pairs

Pages 5604-5615 | Received 03 Apr 1996, Accepted 12 Jul 1996, Published online: 29 Mar 2023

REFERENCES

  • Aaltonen, L. A., P. Peltomaki, F. Leach, P. Sistonen, S. M. Pylkkanen, J.-P. Mecklin, H. Jarvinen, S. Powell, J. Jen, S. R. Hamilton, G. M. Petersen, K. W. Kinzler, B. Vogelstein, and A. de la Chapelle. 1993. Clues to the pathogenesis of familial colorectal cancer. Science 260: 812–816.
  • Alani, E. Unpublished observations.
  • Alani, E., N. W. Chi, and R. D. Kolodner. 1995. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and loop insertions. Genes Dev. 9: 234–247.
  • Alani, E., R. A. G. Reenan, and R. D. Kolodner. 1994. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137: 19–39.
  • Au, K. G., K. Welsh, and P. Modrich. 1992. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267: 12142–12148.
  • Bishop, D. K., J. Andersen, and R. D. Kolodner. 1989. Specificity of mismatch repair following transformation of Saccharomyces cerevisiae with heteroduplex plasmid DNA. Proc. Natl. Acad. Sci. USA 86: 3713–3717.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Bronner, C. E., S. M. Baker, P. T. Morrison, G. Warren, L. G. Smith, M. Lescoe, M. Kane, C. Earabino, J. Lipford, A. Lindblom, P. Tannergard, R. J. Bollag, A. R. Godwin, D. C. Ward, M. Nordenskjold, R. Fishel, R. Kolodner, and R. M. Liskay. 1994. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature (London) 368: 258–261.
  • Chi, N., and R. D. Kolodner. 1994. Purification and characterization of Msh1, a yeast mitochondrial protein that binds to DNA mismatches. J. Biol. Chem. 269: 29984–29992.
  • Chi, N., and R. D. Kolodner. 1994. The effect of DNA mismatches on the ATPase activity of Msh1, a protein in yeast mitochondria that recognizes DNA mismatches. J. Biol. Chem. 269: 29993–29997.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119–122.
  • Crouse, G. F. Mismatch repair systems in Saccharomyces cerevisiae. In J. Nickoloff and M. Hoekstra (ed.), DNA damage and repair—biochemistry, genetics and cell biology, in press. Humana Press, Totowa, N.J.
  • Datta, A., A. Adjiri, L. New, G. F. Crouse, and S. Jinks-Robertson. 1996. Crossovers between diverged sequences are regulated by mismatch repair proteins in yeast. Mol. Cell. Biol. 16: 1085–1093.
  • Detloff, P., and T. D. Petes. 1992. Measurements of excision repair tracts formed during meiotic recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 1805–1814.
  • de Wind, N., M. Dekker, A. Berns, M. Radman, and H. te Riele. 1995. Inactivation of the mouse MSH2 gene results in postreplicational mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to tumorigenesis. Cell 82: 321–330.
  • Drummond, J. T., G.-M. Li, M. J. Longley, and P. Modrich. 1995. Mismatch recognition by an hMSH2-GTBP heterodimer and differential repair defects in tumor cells. Science 268: 1909–1912.
  • Fishel, R., A. Ewel, S. Lee, M. K. Lescoe, and J. Griffith. 1994. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science 266: 1403–1405.
  • Fishel, R., M. K. Lescoe, M. R. S. Rao, N. G. Copeland, N. A. Jenkins, J. Garber, M. Kane, and R. D. Kolodner. 1993. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038.
  • Fishel, R. A., and R. Kolodner. 1983. Gene conversion in Escherichia coli: the identification of two repair pathways for mismatched nucleotides. UCLA Symp. Mol. Cell. Biol. New Ser. 11: 309–324.
  • Geitz, R. D., and R. H. Schiestl. 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7: 253–263.
  • Grilley, M., K. M. Welsh, S.-S. Su, and P. Modrich. 1989. Isolation and characterization of the Escherichia coli mutL gene product. J. Biol. Chem. 264: 1000–1004.
  • Haber, L. T., and G. C. Walker. 1991. Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. EMBO J. 10: 2707–2715.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.
  • Hollingsworth, N. M., L. Ponte, and C. Halsey. 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9: 1728–1739.
  • Holmes, J. J., S. Clark, and P. Modrich. 1990. Strand specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc. Natl. Acad. Sci. USA 87: 5837–5841.
  • Hughes, M. J., and J. Jiricny. 1992. The purification of a human mismatchbinding protein and identification of its associated ATPase and helicase activities. J. Biol. Chem. 267: 23876–23882.
  • Hunter, N., S. R. Chambers, E. J. Louis, and R. H. Borts. 1996. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 15: 1726–1733.
  • Ionov, Y., M. A. Peinado, S. Malkhosyan, D. Shibata, and M. Perucho. 1993. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature (London) 363: 558–561.
  • Jiricny, J., S. Su, S. G. Wood, and P. Modrich. 1988. Mismatch-containing oligonucleotide duplexes bound by the E. coli mutS-encoded protein. Nucleic Acids Res. 16: 7843–7853.
  • Johnson, A. W., and R. D. Kolodner. 1991. Strand exchange protein I from Saccharomyces cerevisiae: a novel multifunctional protein that contains DNA strand exchange and exonuclease activities. J. Biol. Chem. 266: 14046–14054.
  • Johnson, R. E., G. K. Kovvali, L. Prakash, and S. Prakash. 1996. Requirement of the yeast MSH3 and MSH6 genes for MSH2 dependent genomic stability. J. Biol. Chem. 271: 7285–7288.
  • Kolodner, R. D. 1995. Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem. 20: 397–401.
  • Kolodziej, P. A., and R. A. Young. 1991. Epitope tagging and protein surveillance. Methods Enzymol. 194: 508–519.
  • Kramer, B., W. Kramer, M. S. Williamson, and S. Fogel. 1989. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch repair specific and requires functional PMS genes. Mol. Cell. Biol. 9: 4432–4440.
  • Kramer, B., W. Kramer, M. S. Williamson, and S. Fogel. 1989. Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic mutL and hexB. J. Bacteriol. 171: 5339–5346.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680–685.
  • Lahue, R. S., K. G. Au, and P. Modrich. 1989. DNA mismatch correction in a defined system. Science 245: 160–164.
  • Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper, a hypothetical structure common to a new class of DNA-binding proteins. Science 240: 1759–1764.
  • Leach, F. S., N. C. Nicolaides, N. Papadopoulos, B. Liu, J. Jen, R. Parsons, P. Peltomaki, P. Sistonen, L. A. Aaltonen, M. Nystrom-Lahti, X.-Y. Guan, J. Zhang, P. S. Meltzer, J.-W. Yu, F.-T. Kao, D. J. Chen, K. M. Cerosaletti, R. E. K. Fournier, S. Todd, T. Lewis, R. J. Leach, S. L. Naylor, J. Weissenbach, J.-P. Mecklin, H. Jarvinen, G. M. Petersen, S. R. Hamilton, J. Green, J. Jass, P. Watson, H. T. Lynch, J. M. Trent, A. de la Chapelle, K. W. Kinzler, and B. Vogelstein. 1993. Mutations of a MutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215–1225.
  • Levinson, G., and G. A. Gutman. 1987. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 15: 5313–5338.
  • Li, G.-M., and P. Modrich. 1995. Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc. Natl. Acad. Sci. USA 92: 1950–1954.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
  • Manivasakam, P., S. M. Rosenberg, and P. J. Hastings. 1996. Poorly repaired mismatches in heteroduplex DNA are hyper-recombinagenic in Saccharomyces cerevisiae. Genetics 142: 407–416.
  • Marsischky, G. T., N. Filosi, M. F. Kane, and R. Kolodner. 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10: 407–420.
  • Matic, I., C. Rayssiguier, and M. Radman. 1995. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80: 507–515.
  • McEntee, K., G. Weinstock, and I. R. Lehman. 1980. recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein. Proc. Natl. Acad. Sci. USA 77: 857–861.
  • Miller, J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Miret, J. J., M. G. Milla, and R. S. Lahue. 1993. Characterization of a DNA mismatch-binding activity in yeast extracts. J. Biol. Chem. 268: 3507–3513.
  • Miret, J. J., B. O. Parker, and R. S. Lahue. 1996. Recognition of DNA insertion/deletion mismatches by an activity in Saccharomyces cerevisiae. Nucleic Acids Res. 24: 721–729.
  • Modrich, P. 1991. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25: 229–253.
  • Nag, D. K., and T. D. Petes. 1991. Seven-base-pair inverted repeats in DNA form stable hairpin in vivo in Saccharomyces cerevisiae. Genetics 129: 669–673.
  • New, L., K. Liu, and G. F. Crouse. 1993. The yeast gene MSH3 defines a new class of eukaryotic MutS homologues. Mol. Gen. Genet. 239: 97–108.
  • Nicolaides, N. C., N. Papadopoulos, B. Liu, Y. Wei, K. C. Carter, S. M. Ruben, C. A. Rosen, W. A. Haseltine, R. D. Fleischmann, C. M. Fraser, M. D. Adams, J. C. Venter, M. G. Dunlop, S. R. Hamilton, G. M. Petersen, A. de la Chapelle, B. Vogelstein, and K. Kinzler. 1994. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature (London) 371: 75–80.
  • Palombo, F., P. Gallinari, I. Iaccarino, T. Lettieri, M. Hughes, A. D’Arrigo, O. Truong, J. J. Hsuan, and J. Jiricny. 1995. GTBP, a 160 kD protein essential for mismatch binding activity in human cells. Science 268: 1912–1914.
  • Papadopoulos, N., N. C. Nicolaides, B. Liu, R. Parsons, C. Lengauer, F. Palombo, A. D’Arrigo, S. Markowitz, J. K. V. Willson, K. W. Kinzler, J. Jiricny, and B. Vogelstein. 1995. Mutation of GTBP in genetically unstable cells. Science 268: 1915–1917.
  • Papadopoulos, N., N. C. Nicolaides, Y.-F. Wei, S. M. Ruben, K. C. Carter, C. A. Rosen, W. A. Haseltine, R. D. Fleischmann, C. M. Fraser, M. D. Adams, J. C. Venter, S. R. Hamilton, G. M. Petersen, P. Watson, H. T. Lynch, P. Peltomaki, J.-P. Mecklin, A. de la Chapelle, K. W. Kinzler, and B. Vogelstein. 1994. Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625–1628.
  • Parker, B. O., and M. G. Marinus. 1992. Repair of DNA heteroduplexes containing small heterologous sequences in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 1730–1734.
  • Parsons, R., G.-M. Li, M. J. Longley, W. Fang, N. Papadopoulos, J. Jen, A. de la Chapelle, K. W. Kinzler, B. Vogelstein, and P. Modrich. 1993. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75: 1227–1236.
  • Prolla, T. A., D. M. Christie, and R. M. Liskay. 1994. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol. Cell. Biol. 14: 407–415.
  • Prolla, T. A., Q. Pang, E. Alani, R. D. Kolodner, and R. M. Liskay. 1994. Interactions between the MSH2, MLH1 and PMS1 proteins during the initiation of DNA mismatch repair. Science 265: 1091–1093.
  • Rayssiguier, C., D. S. Thaler, and M. Radman. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature (London) 342: 396–401.
  • Reenan, R. A. G., and R. D. Kolodner. 1992. Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132: 963–973.
  • Reenan, R. A. G., and R. D. Kolodner. 1992. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132: 975–985.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Ross-Macdonald, P., and G. S. Roeder. 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79: 1069–1080.
  • Selva, E. M., L. New, G. F. Crouse, and R. S. Lahue. 1995. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139: 1175–1188.
  • Shen, P., and H. V. Huang. 1989. Effect of base pair mismatches on recombination via the RecBCD pathway. Mol. Gen. Genet. 218: 358–360.
  • Sherman, F., G. Fink, and J. Hicks. 1983. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sokolsky, T., and E. Alani. Unpublished observations.
  • Strand, M., M. C. Earley, G. F. Crouse, and T. D. Petes. 1995. Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 92: 10418–10421.
  • Strand, M., T. A. Prolla, R. M. Liskay, and T. D. Petes. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature (London) 365: 274–276.
  • Streisinger, G., Y. Okada, J. Emrich, J. Newton, A. Tsugita, E. Terzaghi, and M. Inouye. 1966. Frameshift mutations and genetic code. Cold Spring Harbor Symp. Quant. Biol. 31: 77–84.
  • Su, S., R. S. Lahue, K. G. Au, and P. Modrich. 1988. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 263: 6829–6835.
  • Thibodeau, S. N., G. Bren, and D. Schaid. 1993. Microsatellite instability in cancer of the proximal colon. Science 260: 816–819.
  • Thomas, D. C., J. D. Roberts, and T. A. Kunkel. 1991. Heteroduplex repair in extracts of human HeLa cells. J. Biol. Chem. 266: 3744–3751.
  • Umar, A., J. C. Boyer, D. C. Thomas, D. C. Nguyen, J. I. Risinger, J. Boyd, Y. Ionov, M. Perucho, and T. A. Kunkel. 1994. Defective mismatch repair in extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability. J. Biol. Chem. 269: 14367–14370.
  • Varlet, I., M. Radman, and P. Brooks. 1990. DNA mismatch repair in Xenopus egg extracts: repair efficiency and DNA repair synthesis for all single base-pair mismatches. Proc. Natl. Acad. Sci. USA 87: 7883–7887.
  • Welsh, K. M., A.-L. Lu, S. Clark, and P. Modrich. 1987. Isolation and characterization of the Escherichia coli mutH gene product. J. Biol. Chem. 262: 15624–15629.
  • Winston, F., C. Dollard, and S. L. Ricupero-Hovasse. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11: 53–55.
  • Worth, L., S. Clark, M. Radman, and P. Modrich. 1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNA’s. Proc. Natl. Acad. Sci. USA 91: 3238–3241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.