19
Views
51
CrossRef citations to date
0
Altmetric
Research Article

TC21 Causes Transformation by Raf-Independent Signaling Pathways

, , , , , & show all
Pages 6132-6140 | Received 16 May 1996, Accepted 09 Aug 1996, Published online: 29 Mar 2023

REFERENCES

  • Basu, T. N., D. H. Gutmann, J. A. Fletcher, T. W. Glover, F. S. Collins, and J. Downward. 1992. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature (London) 356:713–715.
  • Beranger, F., B. Goud, A. Tavitian, and J. de Gunzburg. 1991. Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Proc. Natl. Acad. Sci. USA 88:1606–1610.
  • Boguski, M. S., and F. McCormick. 1993. Proteins regulating Ras and its relatives. Nature (London) 366:643–654.
  • Bollag, G., and F. McCormick. 1992. GTPase activating proteins. Cancer Biol. 3:199–208.
  • Bollag, G., and F. McCormick. 1995. Intrinsic and GTPase-activating protein-stimulated Ras GTPase assays. Methods Enzymol. 255:161–170.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase super-family: conserved structure and molecular mechanism. Nature (London) 349:117–126.
  • Brtva, T. R., J. K. Drugan, S. Ghosh, R. S. Terrell, S. Campbell-Burk, R. M. Bell, and C. J. Der. 1995. Two distinct Raf domains mediate interaction with Ras. J. Biol. Chem. 270:9809–9812.
  • Carboni, J. M., N. Yan, A. D. Cox, X. Bustelo, S. M. Graham, M. J. Lynch, R. Weinmann, B. R. Seizinger, C. J. Der, M. Barbacid, and V. Manne. 1995. Farnesyltransferase inhibitors are inhibitors of Ras, but not R-Ras/TC21, transformation. Oncogene 10:1905–1913.
  • Cepko, C. L., B. Roberts, and R. C. Mulligan. 1984. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37:1053–1062.
  • Chan, A. M. L., T. Miki, K. A. Meyers, and S. A. Aaronson. 1994. A human oncogene of the ras superfamily unmasked by expression cDNA cloning. Proc. Natl. Acad. Sci. USA 91:7558–7562.
  • Chang, E. C., M. Barr, Y. Wang, V. Jung, H.-P. Xu, and M. H. Wigler. 1994. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 79:131–141.
  • Chen, S.-Y., S. Y. Huff, C.-C. Lai, C. J. Der, and S. Powers. 1994. Dominant-negative Ras-15A protein, but not Ras-17N, binds irreversibly to CDC25 GDP-GTP exchange protein. Oncogene 9:2691–2698.
  • Clark, G. J., A. D. Cox, S. M. Graham, and C. J. Der. 1995. Biological assays for Ras transformation. Methods Enzymol. 255:395–412.
  • Clark, G. J., M. S. Kinch, T. M. Gilmer, K. Burridge, and C. J. Der. 1996. Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. Oncogene 12:169–176.
  • Cook, S. J., B. Rubinfeld, I. Albert, and F. McCormick. 1993. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12:3475–3485.
  • Cowley, S., H. Paterson, P. Kemp, and C. J. Marshall. 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Cox, A. D., T. R. Brtva, D. G. Lowe, and C. J. Der. 1994. R-Ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene 9:3281–3288.
  • Davis, R. J. 1993. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268:14553–14556.
  • DeClue, J. E., A. G. Papageorge, J. A. Fletcher, S. R. Diehl, N. Ratner, W. C. Vass, and D. R. Lowy. 1992. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69:265–273.
  • Drugan, J. K., R. Khosravi-Far, M. A. White, C. J. Der, Y.-J. Sung, Y.-W. Huang, and S. L. Campbell. 1996. Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation. J. Biol. Chem. 271:233–237.
  • Egan, S. E., and R. A. Weinberg. 1993. The pathway to signal achievement. Nature (London) 365:781–783.
  • Feig, L. A. 1993. The many roads that lead to Ras. Science 260:767–768.
  • Feig, L. A., and G. M. Cooper. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8:3235–3243.
  • Fields, S., and O. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature (London) 340:245–246.
  • Frech, M., J. John, V. Pizon, P. Chardi, A. Tavitian, R. Clark, F. McCormick, and A. Wittinghofer. 1990. Inhibition of GTPase activating protein stimulation of Ras-p21 GTPase by the Krev-1 gene product. Science 249:169–171.
  • Furth, M. E., T. H. Aldrich, and C. Cordon-Cardo. 1987. Expression of ras proto-oncogene proteins in normal human tissues. Oncogene 1:47–58.
  • Graham, S. M., A. D. Cox, G. Drivas, M. R. Rush, P. D’Eustachio, and C. J. Der. R-RasB/TC21. In M. Zerial and J. Tooze (ed.), Guidebook to the small GTPases, in press. Oxford University Press, Oxford.
  • Graham, S. M., A. D. Cox, G. Drivas, M. R. Rush, P. D’Eustachio, and C. J. Der. 1994. Aberrant function of the Ras-related TC21/R-Ras2 protein triggers malignant transformation. Mol. Cell. Biol. 14:4108–4115.
  • Han, L., and J. Colicelli. 1995. A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol. Cell. Biol. 15:1318–1323.
  • Harihatan, I. K., R. W. Carthew, and G. M. Rubin. 1991. The Drosophila roughened mutation: activation of a rap homolog disrupts eye development and interferes with cell determination. Cell 67:717–722.
  • Hata, Y., A. Kikuchi, T. Sasaki, M. D. Schaber, J. B. Gibbs, and Y. Takai. 1990. Inhibition of the ras p21 GTPase-activating protein-stimulated GTPase activity of c-Ha-ras p21 by smg p21 having the same putative effector domain as ras p21s. J. Biol. Chem. 265:7104–7107.
  • Hauser, C. A., J. K. Westwick, and L. A. Quilliam. 1995. Ras-mediated transcription activation: analysis by transient cotransfection assays. Methods Enzymol. 255:412–426.
  • Hofer, F., S. Fields, C. Schneider, and G. S. Martin. 1994. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc. Natl. Acad. Sci. USA 91:11089–11093.
  • Huff, S. Y., L. A. Quilliam, A. D. Cox, and C. J. Der. R-Ras is regulated by activators and effectors which are distinct from those that control Ras function. Oncogene, in press.
  • Joneson, T., M. A. White, M. H. Wigler, and D. Bar-Sagi. 1996. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271:810–812.
  • Jung, V., W. Wei, R. Ballester, J. Camonis, S. Mi, L. Van Aelst, M. Wigler, and D. Broek. 1994. Two types of Ras mutants that dominantly interfere with activators of Ras. Mol. Cell. Biol. 14:3707–3718.
  • Khosravi-Far, R., and C. J. Der. 1994. The Ras signal transduction pathway. Cancer Metastasis Rev. 13:67–89.
  • Khosravi-Far, R., P. A. Solski, G. J. Clark, M. S. Kinch, and C. J. Der. 1995. Activation of Rac, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15:6443–6453.
  • Khosravi-Far, R., M. A. White, J. K. Westwick, P. A. Solski, M. Chrzanowska-Wodnicka, L. Van Aelst, M. H. Wigler, and C. J. Der. 1996. Oncogenic Ras activation of Raf/MAP kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16:3923–3933.
  • Kikuchi, A., S. D. Demo, Z.-H. Ye, Y.-W. Chen, and L. T. Williams. 1994. ralGDS family members interact with the effector loop of ras p21. Mol. Cell. Biol. 14:7483–7491.
  • Kitayama, H., T. Matsuzaki, Y. Ikawa, and M. Noda. 1990. Genetic analysis of the Kirsten-ras-revertant 1 gene: potentiation of its tumor suppressor activity by specific point mutations. Proc. Natl. Acad. Sci. USA 87:4284–4288.
  • Kitayama, H., Y. Sugimoto, T. Matsuzaki, Y. Ikawa, and M. Noda. 1989. A ras-related gene with transformation suppressor activity. Cell 56:77–84.
  • Kolch, W., G. Heidecker, P. Lloyd, and U. R. Rapp. 1991. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature (London) 349:426–428.
  • Krengel, U., L. Schlichting, A. Scherer, R. Schumann, M. Frech, J. John, W. Kabsch, E. F. Pai, and A. Wittinghofer. 1990. Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62:539–548.
  • Leevers, S. J., and C. J. Marshall. 1992. MAP kinase regulation—the oncogene connection. Trends Cell Biol. 2:283–286.
  • Mansour, S. J., W. T. Matten, A. S. Hermann, J. M. Candia, S. Rong, K. Fukasawa, G. F. Vande Woude, and N. G. Ahn. 1994. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970.
  • Marais, R., J. Wynne, and R. Treisman. 1993. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–393.
  • Marshall, M. S. 1993. The effector interactions of p21ras. Trends Biochem. Sci. 18:250–254.
  • Milburn, M. V., L. Tong, A. M. DeVos, A. Brunger, Z. Yamaizumi, S. Nishimura, and S.-H. Kim. 1990. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945.
  • Moodie, S. A., and A. Wolfman. 1994. The 3Rs of life: Ras, Raf and growth regulation. Trends Genet. 10:14–18.
  • Mosteller, R. D., J. Han, and D. Broek. 1994. Identification of residues of the H-Ras protein critical for functional interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14:1104–1112.
  • Oldham, S. M., G. J. Clark, L. M. Gangarosa, R. J. Coffey, Jr., and C. J. Der. 1996. Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. Proc. Natl. Acad. Sci. USA 93:6924–6928.
  • Polakis, P., and F. McCormick. 1993. Structural requirements for the interaction of p21ras with GAP, exchange factors, and its biological effector target. J. Biol. Chem. 268:9157–9160.
  • Prendergast, G. C., and J. B. Gibbs. 1993. Pathways of Ras function: connections to the actin cytoskeleton. Adv. Cancer Res. 62:19–63.
  • Prendergast, G. C., R. Khosravi-Far, P. A. Solski, H. Kurzawa, P. F. Lebowitz, and C. J. Der. 1995. Critical role of RhoB in cell transformation by oncogenic Ras. Oncogene 10:2289–2296.
  • Qiu, R.-G., J. Chen, F. McCormick, and M. Symons. 1995. A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92:11781–11785.
  • Qiu, R.-G., F. McCormick, and M. Symons. 1995. An essential role for Rac in Ras transformation. Nature (London) 374:457–459.
  • Quilliam, L. A., M. M. Hisaka, S. Zhong, A. Lowry, R. D. Mosteller, J. Han, J. K. Drugan, D. Broek, S. Campbell, and C. J. Der. 1996. Involvement of the switch 2 domain of Ras in its interaction with guanine nucleotide exchange factors. J. Biol. Chem. 271:11076–11082.
  • Quilliam, L. A., S. Y. Huff, K. M. Rabun, W. Wei, D. Broek, and C. J. Der. 1994. Membrane-targetting potentiates CDC25 and SOS activation of Ras transformation. Proc. Natl. Acad. Sci. USA 91:8512–8516.
  • Quilliam, L. A., K. Kato, K. M. Rabun, M. M. Hisaka, S. Y. Huff, S. Campbell-Burk, and C. J. Der. 1994. Identification of residues critical for Ras(17N) growth inhibitory phenotype and for Ras interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14:1113–1121.
  • Quilliam, L. A., R. Khosravi-Far, S. Y. Huff, and C. J. Der. 1995. Activators of Ras superfamily proteins. Bioessays 17:395–404.
  • Reuter, C. W. M., A. D. Catling, and M. J. Weber. 1995. Immune complex kinase assays for mitogen-activated protein kinase and MEK. Methods Enzymol. 255:245–256.
  • Rodriguez-Viciana, P., P. H. Warne, R. Dhand, B. Vanhaesebroeck, I. Gout, M. J. Fry, M. D. Waterfield, and J. Downward. 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature (London) 370:527–532.
  • Russell, M., C. A. Lange-Carter, and G. L. Johnson. 1995. Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J. Biol. Chem. 270:11757–11760.
  • Sato, K. Y., P. G. Polakis, H. Haubruck, C. L. Fasching, F. McCormick, and E. J. Stanbridge. 1994. Analysis of the tumor suppressor activity of the K-rev-1 gene in human tumor cell lines. Cancer Res. 54:552–559.
  • Schlessinger, J. 1993. How receptor tyrosine kinases activate Ras. Trends Biochem. Sci. 18:273–275.
  • Schweighoffer, F., H. Cai, M. C. Chevallier-Multon, I. Fath, G. Cooper, and B. Tocque. 1993. The Saccharomyces cerevisiae SDC25 C-domain gene product overcomes the dominant inhibitory activity of Ha-Ras Asn-17. Mol. Cell. Biol. 13:39–43.
  • Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40.
  • Spaargaren, M., and J. R. Bischoff. 1994. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras and Rap. Proc. Natl. Acad. Sci. USA 91:12609–12613.
  • Umanoff, H., W. Edelmann, A. Pellicer, and R. Kucherlapati. 1995. The murine N-ras gene is not essential for growth and development. Proc. Natl. Acad. Sci. USA 92:1709–1713.
  • Van Aelst, L., M. Barr, S. Marcus, A. Polverino, and M. Wigler. 1993. Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA 90:6213–6217.
  • Van Aelst, L., M. A. White, and M. H. Wigler. 1994. Ras partners. Cold Spring Harbor Symp. Quant. Biol. 59:181–186.
  • Vojtek, A. B., S. M. Hollenberg, and J. A. Cooper. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214.
  • White, M. A., C. Nicolette, A. Minden, A. Polverino, L. Van Aelst, M. Karin, and M. H. Wigler. 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80:533–541.
  • Wu, J., J. K. Harrison, P. Dent, K. R. Lynch, M. J. Weber, and T. W. Sturgill. 1993. Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol. Cell. Biol. 13:4539–4548.
  • Zhang, X., J. Settleman, J. M. Kyriakis, E. Takeuchi-Suzuki, S. J. Elledge, M. S. Marshall, J. T. Bruder, U. R. Rapp, and J. Avruch. 1993. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature (London) 364:308–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.