15
Views
90
CrossRef citations to date
0
Altmetric
Research Article

ERCC4 (XPF) Encodes a Human Nucleotide Excision Repair Protein with Eukaryotic Recombination Homologs

, , , , , , , , & show all
Pages 6553-6562 | Received 28 Jun 1996, Accepted 07 Aug 1996, Published online: 29 Mar 2023

REFERENCES

  • Aboussekhra, A., M. Biggerstaff, M. K. K. Shivji, J. A. Vilpo, V. Moncollin, V. N. Podust, M. Protic, U. Hubscher, J. M. Egly, and R. D. Wood. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868.
  • Asahina, H., I. Kuraoka, M. Shirakawa, E. H. Morita, N. Miura, I. Miyamoto, E. Ohtsuka, Y. Okada, and K. Tanaka. 1994. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat. Res. 315:229–237.
  • Baker, B. S., and A. T. C. Carpenter. 1972. Genetic analysis of sex chromosomal meiotic mutants in Drosophila melanogaster. Genetics 71:255–286.
  • Bardwell, A. J., L. Bardwell, D. K. Johnson, and E. C. Friedberg. 1993. Yeast DNA recombination and repair proteins Rad1 and Rad10 constitute a complex in vivo mediated by localized hydrophobic domains. Mol. Microbiol. 8:1177–1188.
  • Bardwell, A. J., L. Bardwell, A. E. Tomkinson, and E. C. Friedberg. 1994. Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 endonuclease. Science 265:2082–2085.
  • Bessho, T., M. P. Thelen, and A. Sancar. Unpublished results.
  • Biggerstaff, M., D. E. Szymkowski, and R. D. Wood. 1993. Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J. 12:3685–3692.
  • Boyd, J. B., M. D. Golino, and R. B. Setlow. 1976. The mei-9a mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair. Genetics 84:527–544.
  • Bramson, J., and L. C. Panasci. 1993. Effect of ERCC-1 overexpression on sensitivity of Chinese hamster ovary cells to DNA damaging agents. Cancer Res. 53:3237–3240.
  • Burns, J. L., S. N. Guzder, P. Sung, S. Prakash, and L. Prakash. 1996. An affinity of human replication protein A for ultraviolet-damaged DNA. J. Biol. Chem. 271:11607–11610.
  • Busch, D. B., H. van Vuuren, J. de Wit, A. Collins, M. Zdzienicka, D. L. Mitchell, K. W. Brookman, M. Stefanini, R. Ribioni, L. H. Thompson, R. B. Albert, A. van Gool, and J. Hoeijmakers. Phenotypic heterogeneity in FAECB nucleotide excision repair mutants of rodent complementation groups 1 and 4. Submitted for publication.
  • Carpenter, A. T. 1982. Mismatch repair, gene conversion, and crossing-over in two recombination-defective mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 79:5961–5965.
  • Carr, A. M., H. Schmidt, S. Kirchhoff, W. J. Muriel, K. S. Sheldrick, D. J. Griffiths, C. N. Basmacioglu, S. Subramani, M. Clegg, A. Nasim, and A. R. Lehmann. 1994. The rad16 gene of Schizosaccharomycespombe: a homolog of the RAD1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 14:2029–2040.
  • Cleaver, J. E. 1972. Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to ultraviolet light. J. Invest. Dermatol. 58:124–128.
  • Cleaver, J. E., and K. H. Kraemer. 1995. Xeroderma pigmentosum and Cockayne syndrome, p. 4393–4419. In C. R. Scriver, A. L. Beudet, W. S. Sly, and D. Valle (ed.), The metabolic and molecular bases of inherited disease, 7th ed. vol. III. McGraw-Hill, New York.
  • Drapkin, R., J. Reardon, A. Ansari, J. C. Huang, L. Zawel, K. Ahn, A. Sancar, and D. Reinberg. 1994. TFIIH, a link between RNA polymerase II transcription and DNA excision repair. Nature (London) 368:769–772.
  • Drapkin, R., and D. Reinberg. 1994. The multifunctional TFIIH complex and transcriptional control. Trends Biochem. Sci. 19:504–508.
  • Flejter, W. L., L. D. McDaniel, D. Johns, E. C. Friedberg, and R. A. Schultz. 1992. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc. Natl. Acad. Sci. USA 89:261–265.
  • Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA repair and mutagenesis. American Society for Microbiology, Washington, D.C.
  • Frohman, M. A. 1990. RACE: rapid amplification of cDNA ends, p. 28–38. In M. A. Innes (ed.), PCR protocols: a guide to methods and applications. Academic Press, San Diego.
  • Galloway, A. M., M. Liuzzi, and M. C. Paterson. 1994. Metabolic processing of cyclobutyl pyrimidine dimers and (6-4) photoproducts in UV-treated human cells. Evidence for distinct excision-repair pathways. J. Biol. Chem. 269:974–980.
  • Hata, H., M. Numata, H. Tohda, A. Yasui, and A. Oikawa. 1991. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines. Cancer Res. 51:195–198.
  • Hayakawa, H., K. Ishizaki, M. Inoue, T. Yagi, M. Sekiguchi, and H. Takebe. 1981. Repair of ultraviolet radiation damage in xeroderma pigmentosum cells belonging to complementation group F. Mutat. Res. 80:381–388.
  • He, Z., L. A. Henricksen, M. S. Wold, and C. J. Ingles. 1995. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature (London) 374:566–569.
  • Hoeijmakers, J. H. J. 1994. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur. J. Cancer 30A:1912–1921.
  • Hoy, C. A., L. H. Thompson, C. L. Mooney, and E. P. Salazar. 1985. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents. Cancer Res. 45:1737–1743.
  • Huang, J. C., D. L. Svoboda, J. T. Reardon, and A. Sancar. 1992. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc. Natl. Acad. Sci. USA 89:3664–3668.
  • Ivanov, E. L., and J. E. Haber. 1995. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2245–2251.
  • Jones, C. J., and R. D. Wood. 1993. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 32:12096–12116.
  • Keijzer, W., N. G. J. Jaspers, P. J. Abrahams, A. M. R. Taylor, C. F. Arlett, B. Zelle, H. Takebe, P. D. S. Kinmont, and D. Bootsma. 1979. A seventh complementation group in excision-deficient xeroderma pigmentosum. Mutat. Res. 62:183–190.
  • Kozak, M. 1995. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc. Natl. Acad. Sci. USA 92:2662–2666.
  • Lamerdin, J. E., M. A. Montgomery, S. A. Stilwagen, L. K. Scheidecker, R. S. Tebbs, K. W. Brookman, L. H. Thompson, and A. V. Carrano. 1995. Genomic sequence comparison of the human and mouse XRCC1 DNA repair gene regions. Genomics 25:547–554.
  • Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a class of DNA binding proteins. Science 240:1759–1763.
  • Legerski, R., and C. Peterson. 1992. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature (London) 359:70–73.
  • Liu, P., J. Siciliano, B. White, R. Legerski, D. Callen, S. Reeders, M. J. Siciliano, and L. H. Thompson. 1992. Regional mapping of human DNA excision repair gene ERCC4 to chromosome 16p13.13-p13.2. Mutagenesis 8:199–205.
  • MacInnes, M. A., J. A. Dickson, R. R. Hernandez, D. Learmonth, G. Y. Lin, J. S. Mudgett, M. S. Park, S. Schauer, R. J. Reynolds, G. F. Strniste, and J. Y. Yu. 1993. Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Mol. Cell. Biol. 13:6393–6402.
  • Maher, V. M., D. J. Dorney, A. L. Mendrala, B. Konze-Thomas, and J. J. McCormick. 1979. DNA excision-repair processes in human cells can eliminate the cytotoxic and mutagenic consequences of ultraviolet radiation. Mutat. Res. 62:311–323.
  • Manley, J. L., A. Fire, A. Cano, P. A. Sharp, and M. L. Gefter. 1980. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl. Acad. Sci. USA 77:3855–3859.
  • Martin-Gallardo, A., J. Lamerdin, and A. V. Carrano. 1993. Shotgun sequencing, p. 37–41. In M. Adams, C. Fields, and J. C. Ventner (ed.), Automated DNA sequencing and analysis. Academic Press, London.
  • Matsunaga, T., D. Mu, C. H. Park, J. T. Reardon, and A. Sancar. 1995. Human DNA repair excision nuclease. J. Biol. Chem. 270:20862–20869.
  • Matsunaga, T., C. H. Park, T. Bessho, D. Mu, and A. Sancar. 1996. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J. Biol. Chem. 271:11047–11050.
  • McWhir, J., J. Selfridge, D. J. Harrison, S. Squires, and D. W. Melton. 1993. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genet. 5:217–224.
  • Mu, D., D. S. Hsu, and A. Sancar. 1996. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271:8285–8294.
  • Mu, D., C. H. Park, T. Matsunaga, D. S. Hsu, J. T. Reardon, and A. Sancar. 1995. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270:2415–2418.
  • O’Donovan, A., A. A. Davies, J. G. Moggs, S. C. West, and R. D. Wood. 1994. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature (London) 371:432–435.
  • Pan, Z. Q., J. T. Reardon, L. Li, H. Fores-Rozas, R. Legerski, A. Sancar, and J. Hurwitz. 1995. Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. J. Biol. Chem. 270:22008–22016.
  • Park, C. H., T. Bessho, T. Matsunaga, and A. Sancar. 1995. Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. J. Biol. Chem. 270:22657–22660.
  • Peterson, C., and R. Legerski. 1991. High-frequency transformation of human repair-deficient cell lines by an Epstein-Barr virus-based cDNA expression vector. Gene 107:279–284.
  • Reardon, J. T., L. H. Thompson, and A. Sancar. 1993. Excision repair in man and the molecular basis of xeroderma pigmentosum syndrome. Cold Spring Harbor Symp. Quant. Biol. 58:605–617.
  • Reynolds, P., L. Prakash, and S. Prakash. 1987. Nucleotide sequence and functional analysis of the RAD1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1012–1020.
  • Riboni, R., E. Botta, M. Stefanini, M. Numata, and A. Yasui. 1992. Identification of the eleventh complementation group of UV-sensitive excision repair-defective rodent mutants. Cancer Res. 52:6690–6691.
  • Sancar, A. 1996. DNA excision repair. Annu. Rev. Biochem. 65:43–81.
  • Satoh, M. S., C. J. Jones, R. D. Wood, and T. Lindahl. 1993. DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions. Proc. Natl. Acad. Sci. USA 90:6335–6339.
  • Saxon, P. J., R. A. Schultz, E. J. Stanbridge, and E. C. Friedberg. 1989. Human chromosome 15 confers partial complementation of phenotypes to xeroderma pigmentosum group F cells. Am. J. Hum. Genet. 44:474–485.
  • Schaeffer, L., V. Moncollin, R. Roy, A. Staub, M. Mezzina, A. Sarasin, G. Weeda, J. H. Hoeijmakers, and J. M. Egly. 1994. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13:2388–2392.
  • Schaeffer, L., R. Roy, S. Humbert, V. Moncollin, W. Vermeulen, J. H. Hoeijmakers, P. Chambon, and J. M. Egly. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63.
  • Scherly, D., T. Nouspikel, J. Corlet, C. Ucla, A. Bairoch, and S. G. Clarkson. 1993. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature (London) 363:182–185.
  • Schiestl, R. H., and S. Prakash. 1988. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol. Cell. Biol. 8:3619–3626.
  • Schiestl, R. H., and S. Prakash. 1990. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol. Cell. Biol. 10:2485–2491.
  • Sekelsky, J. J., K. S. McKim, G. M. Chin, and R. S. Hawley. 1995. The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1. Genetics 141:619–627.
  • Shivji, M. K., V. N. Podust, U. Hubscher, and R. D. Wood. 1995. Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry 34:5011–5017.
  • Sijbers, A. M., W. L. de Laat, R. R. Ariza, M. Biggerstaff, Y. F. Wei, J. G. Moggs, K. C. Carter, B. K. Shell, E. Evans, M. C. de Jong, S. Rademakers, J. de Rooij, N. G. J. Jaspers, J. H. J. Hoeijmakers, and R. D. Wood. 1996. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86:811–822.
  • Sorenson, C. M., and A. Eastman. 1988. Mechanism of cis-diamminedichlo-roplatinum(II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks. Cancer Res. 48:4484–4488.
  • Sung, P., P. Reynolds, L. Prakash, and S. Prakash. 1993. Purification and characterization of the Saccharomyces cerevisiae RAD1/RAD10 endonuclease. J. Biol. Chem. 268:26391–26399.
  • Svoboda, D. L., J. S. Taylor, J. E. Hearst, and A. Sancar. 1993. DNA repair by eukaryotic nucleotide excision nuclease. Removal of thymine dimer and psoralen monoadduct by HeLa cell-free extract and of thymine dimer by Xenopus laevis oocytes. J. Biol. Chem. 268:1931–1936.
  • Tanaka, K., N. Miura, I. Satokata, I. Miyamoto, M. C. Yoshida, Y. Satoh, S. Kondo, A. Yasui, H. Okayama, and Y. Okada. 1990. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature (London) 348:73–76.
  • Thompson, L. H. 1996. Evidence that mammalian cells possess homologous recombinational repair pathways. Mutat. Res. 363:77–88.
  • Thompson, L. H. Nucleotide excision repair: its relation to human disease. In J. A. Nickoloff and M. Hoekstra (ed.), DNA damage and repair—biochemistry, genetics, and cell biology. Humana Press, in press.
  • Thompson, L. H., K. W. Brookman, N. J. Jones, S. A. Allen, and A. V. Carrano. 1990. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol. Cell. Biol. 10:6160–6171.
  • Thompson, L. H., K. W. Brookman, C. A. Weber, E. P. Salazar, J. T. Reardon, A. Sancar, Z. Deng, and M. J. Siciliano. 1994. Molecular cloning of the human nucleotide-excision-repair gene ERCC4. Proc. Natl. Acad. Sci. USA 91:6855–6859.
  • Thompson, L. H., D. B. Busch, K. W. Brookman, C. L. Mooney, and D. A. Glaser. 1981. Genetic diversity of UV-sensitive DNA repair mutants of Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 78:3734–3737.
  • Thompson, L. H., C. L. Mooney, and K. W. Brookman. 1985. Genetic complementation between UV-sensitive CHO mutants and xeroderma pigmentosum fibroblasts. Mutat. Res. 150:423–429.
  • Tomkinson, A. E., A. J. Bardwell, L. Bardwell, N. J. Tappe, and E. C. Friedberg. 1993. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature (London) 362:860–862.
  • Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma, and J. H. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71:939–953.
  • Uberbacher, E. C., and R. J. Mural. 1991. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88:11261–11265.
  • van Duin, M., J. de Wit, H. Odijk, A. Westerveld, A. Yasui, M. H. M. Koken, J. Hoeijmakers, and D. Bootsma. 1986. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44:913–923.
  • van Duin, M., G. Vredeveldt, L. V. Mayne, H. Odijk, W. Vermeulen, B. Klein, G. Weeda, J. H. Hoeijmakers, D. Bootsma, and A. Westerveld. 1989. The cloned human DNA excision repair gene ERCC-1 fails to correct xeroderma pigmentosum complementation groups A through I. Mutat. Res. 217:83–92.
  • van Vuuren, A. J., E. Appeldoorn, H. Odijk, A. Yasui, N. G. Jaspers, D. Bootsma, and J. H. Hoeijmakers. 1993. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J. 12:3693–3701.
  • Vermeulen, W., M. Stefanini, S. Giliani, J. H. Hoeijmakers, and D. Bootsma. 1991. Xeroderma pigmentosum complementation group H falls into complementation group D. Mutat. Res. 255:201–208.
  • Walter, C. A., J. Lu, M. Bhakta, Z. Q. Zhou, L. H. Thompson, and J. R. McCarrey. 1994. Testis and somatic Xrcc-1 DNA repair gene expression. Somatic Cell Mol. Genet. 20:451–461.
  • Weber, C. A., E. P. Salazar, S. A. Stewart, and L. H. Thompson. 1988. Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells. Mol. Cell. Biol. 8:1137–1146.
  • Weber, C. A., E. P. Salazar, S. A. Stewart, and L. H. Thompson. 1990. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9:1437–1447.
  • Weeda, G., R. C. A. van Ham, W. Vermeulen, D. Bootsma, A. J. van der Eb, and J. H. J. Hoeijmakers. 1990. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne’s syndrome. Cell 62:777–791.
  • Wu, Z. N., C. L. Chan, A. Eastman, and E. Bresnick. 1992. Expression of human O6-methylguanine-DNA methyltransferase in a DNA excision repair-deficient Chinese hamster ovary cell line and its response to certain alkylating agents. Cancer Res. 52:32–35.
  • Yagi, T., and H. Takebe. 1983. Establishment by SV40 transformation and characteristics of a cell line of xeroderma pigmentosum belonging to complementation group F. Mutat. Res. 112:59–66.
  • Yang, E., and E. C. Friedberg. 1984. Molecular cloning and nucleotide sequence analysis of the Saccharomyces cerevisiae RAD1 gene. Mol. Cell. Biol. 4:2161–2169.
  • Zhou, Z. Q., and C. A. Walter. 1995. Expression of the DNA repair gene XRCC1 in baboon tissues. Mutat. Res. 348:111–116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.