4
Views
49
CrossRef citations to date
0
Altmetric
Research Article

Phosphorylation of Tyrosine 720 in the Platelet-Derived Growth Factor α Receptor Is Required for Binding of Grb2 and SHP-2 but Not for Activation of Ras or Cell Proliferation

, &
Pages 6926-6936 | Received 12 Jul 1995, Accepted 13 Sep 1996, Published online: 29 Mar 2023

REFERENCES

  • Arvidsson, A.-N., E. Rupp, E. Nanberg, J. Downward, L. Ronnstrand, S. Wennstrom, J. Schlessinger, C.-H. Heldin, and L. Claesson-Welsh. 1994. Tyr-716 in the platelet-derived growth factor beta-receptor kinase insert is involved in GRB2 binding and Ras activation. Mol. Cell. Biol. 14:6715–6726.
  • Barres, B. A., I. K. Hart, H. S. Coles, R. Burne, J. F. Voyvodic, J. T. Richardson, and M. C. Raff. 1992. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70:31–46.
  • Bazenet, C., and A. Kazlauskas. 1994. The PDGF receptor alpha subunit activates p21ras and triggers DNA synthesis without interacting with ras-GAP. Oncogene 9:517–525.
  • Beckmann, M. P., C. Betsholtz, C.-H. Heldin, B. Westermark, E. DiMarco, P. P. Di Fiore, K. C. Robbins, and S. A. Aaronson. 1988. Comparison of biological properties and transforming potential of human PDGF-A and PDGF-B chains. Science 241:1346–1349.
  • Beitz, J. G., I.-S. Kim, P. Calabresi, and A. R. J. Frackelton. 1991. Human microvascular endothelial cells express receptors for platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 88:2021–2025.
  • Bennett, A. M., S. F. Hausdorff, A. M. O’Reilly, R. M. Freeman, and B. G. Neel. 1996. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression. Mol. Cell. Biol. 16:1189–1202.
  • Bennett, A. M., T. L. Tang, S. Sugimoto, C. T. Walsh, and B. J. Neel. 1994. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc. Natl. Acad. Sci. USA 91:7335–7339.
  • Bostrom, H., K. Willetts, M. Pekny, P. Leveen, P. Lindahl, H. Hedstrand, M. Pekna, M. Hellstrom, S. Gebre-Medhin, M. Schalling, M. Nilsson, S. Kurland, J. Tornell, J. K. Heath, and C. Betsholtz. 1996. PDGF-a signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873.
  • Claesson-Welsh, L. 1994. Platelet-derived growth factor receptor signals. J. Biol. Chem. 269:32023–32026.
  • Cohen, G. B., R. Ren, and D. Baltimore. 1995. Modular binding domains in signal transduction proteins. Cell 80:237–248.
  • Cooper, J. A., and C. S. King. 1986. Dephosphorylation or antibody binding to the carboxy terminus stimulates pp60c-src. Mol. Cell. Biol. 6:4467–4477.
  • Courtneidge, S. A. 1985. Activation of the pp60c-src kinase by middle T antigen binding or by dephosphorylation. EMBO J. 4:1471–1477.
  • Do, M.-S., C. Fitzer-Attas, J. Gubbay, L. Greenfield, M. Feldman, and L. Eisenbach. 1992. Mouse platelet-derived growth factor α receptor: sequence, tissue-specific expression and correlation with metastatic phenotype. Oncogene 7:1567–1575.
  • Eccleston, P. A., K. Funa, and C.-H. Heldin. 1993. Expression of platelet-derived growth factor (PDGF) and PDGF α- and β-receptors in the peripheral nervous system: an analysis of sciatic nerve and dorsal root ganglia. Dev. Biol. 155:459–470.
  • Eriksson, A., E. Nanberg, L. Ronnstrand, U. Engstrom, U. Hellman, E. Rupp, G. Carpenter, C. H. Heldin, and L. Claesson-Welsh. 1995. Demonstration of functionally different interactions between phospholipase C-gamma and the two types of platelet-derived growth factor receptors. J. Biol. Chem. 270:7773–7781.
  • Eriksson, A., A. Siegbahn, B. Westermark, C.-H. Heldin, and L. Claesson-Welsh. 1992. PDGF a- and β-receptors activate unique and common signal transduction pathways. EMBO J. 11:543–550.
  • Fantl, W. J., J. A. Escobedo, G. A. Martin, C. T. Turck, M. del Rosario, F. McCormick, and L. T. Williams. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69:413–423.
  • Feng, G.-S., C.-C. Hui, and T. Pawson. 1993. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 259:1607–1611.
  • Fitzer-Attas, C., M. Feldman, and L. Eisenbach. 1993. Expression of functionally intact PDGF-α receptors in highly metastatic 3LL lewis lung carcinoma cells. Int. J. Cancer 53:315–322.
  • Gelderloos, J. A., C. E. Bazenet, and A. Kazlauskas. Unpublished data.
  • Heidaran, M. A., J. F. Beeler, J.-C. Yu, T. Ishibashi, W. J. LaRochelle, J. H. Pierce, and S. A. Aaronson. 1993. Differences in substrate specificities of α and β platelet-derived growth factor (PDGF) receptors. J. Biol. Chem. 268:9287–9295.
  • Heldin, C.-H., B. Westermark, and A. Wasteson. 1981. Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia. Proc. Natl. Acad. Sci. USA 78:3664–3668.
  • Henriksen, R., K. Funa, E. Wilander, T. Backstrom, M. Ridderheim, and K. Oberg. 1993. Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res. 53:4550–4554.
  • Holm, C., D. Gineitis, G. S. McConville, and A. Kazlauskas. Expression of PDGF, VEGF and their receptors in non-small cell lung tumor cell lines. Int. J. Oncol., in press.
  • Inui, H., Y. Kitami, M. Tani, T. Kondo, and T. Inagami. 1994. Differences in signal transduction between platelet-derived growth factor (PDGF) alpha and beta receptors in vascular smooth muscle cells. PDGF-BB is a potent mitogen, but PDGF-AA promotes only protein synthesis without activation of DNA synthesis. J. Biol. Chem. 269:30546–30552.
  • Kashishian, A., A. Kazlauskas, and J. A. Cooper. 1992. Phosphorylation sites in the PDGF receptor with different specificities for binding GAP and PI3 kinase in vivo. EMBO J. 11:1373–1382.
  • Kazlauskas, A. 1994. Receptor tyrosine kinases and their targets. Curr. Opin. Genet. Dev. 4:5–14.
  • Kazlauskas, A., and J. A. Cooper. 1989. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58:1121–1133.
  • Kazlauskas, A., and J. A. Cooper. 1990. Phosphorylation of the PDGF receptor β subunit creates a tight binding site for phosphatidylinositol 3 kinase. EMBO J. 9:3279–3266.
  • Kazlauskas, A., G.-S. Feng, T. Pawson, and M. Valius. 1993. The 64-kDa protein that associates with the platelet-derived growth factor receptor β subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proc. Natl. Acad. Sci. USA 90:6939–6942.
  • Kazlauskas, A., A. Kashishian, J. A. Cooper, and M. Valius. 1992. GTPase-activating protein and phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor receptor β subunit. Mol. Cell. Biol. 12:2534–2544.
  • Klinghoffer, A. R., and A. Kazlauskas. 1995. Identification of a putative Syp substrate, the PDGF beta receptor. J. Biol. Chem. 270:22208–22217.
  • Lechleider, R. J., R. M. J. Freeman, and B. G. Neel. 1993. Tyrosyl phosphorylation and growth factor receptor association of the human corkscrew homologue, SH-PTP2. J. Biol. Chem. 268:13434–13438.
  • Li, N., J. Schlessinger, and B. Margolis. 1994. Autophosphorylation mutants of the EGF-receptor signal through auxiliary mechanisms involving SH2 domain proteins. Oncogene 9:3457–3465.
  • Li, W., R. Nishimura, A. Kashishian, A. G. Batzer, W. J. H. Kim, J. A. Cooper, and J. Schlessinger. 1994. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol. Cell. Biol. 14:509–517.
  • Milarski, K. L., and A. R. Saltiel. 1994. Expression of catalytically inactive Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J. Biol. Chem. 269:21239–21243.
  • Mohammadi, M., C. A. Dionne, W. Li, N. Li, T. Spival, A. M. Honegger, M. Jaye, and J. Schlessinger. 1992. Point mutant in the FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature (London) 358:681–684.
  • Morrison-Graham, K., G. C. Schatteman, T. Bork, D. F. Bowen-Pope, and J. A. Weston. 1992. A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells. Development 115:133–143.
  • Nister, M., T. A. Libermann, C. Betsholtz, M. Pettersson, L. Claesson-Welsh, C.-H. Heldin, J. Schlessinger, and B. Westermark. 1988. Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-α and their receptors in human malignant glioma cell lines. Cancer Res. 48:3910–3918.
  • Nister, M. L., L. Claesson-Welsh, A. Eriksson, C. H. Heldin, and B. Westermark. 1991. Differential expression of platelet-derived growth factor receptors in human malignant glioma cell lines. J. Biol. Chem. 266:16755–16763.
  • Noble, M., K. Murray, P. Stroobant, M. D. Waterfield, and P. Riddle. 1988. PDGF promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature (London) 333:560–562.
  • Palmieri, S. L., J. Payne, C. D. Stiles, J. D. Biggers, and M. Mercola. 1992. Expression of mouse PDGF-A and PDGF α-receptor genes during pre- and post-implantation development: evidence for a developmental shift from an autocrine to a paracrine mode of action. Mech. Dev. 39:181–191.
  • Pawson, T. 1995. Protein modules and signaling networks. Nature (London) 373:573–578.
  • Peters, K. G., J. Marie, E. Wilson, H. E. Ives, J. Escobedo, M. Del Rosario, D. Mirda, and L. T. Williams. 1992. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature (London) 358:678–681.
  • Raff, M. C., L. E. Lillien, W. D. Richardson, J. F. Burne, and M. D. Noble. 1988. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature (London) 333:562–565.
  • Richardson, W. D., N. Pringle, M. J. Mosley, B. Westermark, and M. Dubois-Dalcq. 1988. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53:309–319.
  • Satoh, T., M. Endo, M. Nakafuku, S. Nakamura, and Y. Kaziro. 1990. Platelet-derived growth factor stimulated formation of active p21ras GTP complex in Swiss mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 87:5993–5997.
  • Schatteman, G. C., K. Morrison-Graham, A. van Koppen, J. A. Weston, and D. F. Bowen-Pope. 1992. Regulation and role of PDGF receptor a-subunit expression during embryogenesis. Development 115:123–131.
  • Schlessinger, J. 1994. SH2/SH3 signaling proteins. Curr. Opin. Gen. Dev. 4:25–30.
  • Seifert, R. A., A. van Koppen, and D. F. Bowen-Pope. 1993. PDGF-AB requires PDGF receptor α-subunits for high-affinity, but not for low-affinity, binding and signal transduction. J. Biol. Chem. 268:4473–4480.
  • Shamah, S. M., C. D. Stiles, and A. Guhu. 1993. Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Mol. Cell. Biol. 13:7203–7212.
  • Smits, A., M. Kato, B. Westermark, M. Nister, C.-H. Heldin, and K. Funa. 1991. Neurotrophic activity of platelet-derived growth factor (PDGF): rat neuronal cells possess functional PDGF β-type receptors and respond to PDGF. Proc. Natl. Acad. Sci. USA 88:8159–8163.
  • Soler, C., C. V. Alvarez, L. Beguinot, and G. Carpenter. 1994. Potent SHC tyrosine phosphorylation by epidermal growth factor at low receptor density or in the absence of receptor autophosphorylation sites. Oncogene 9:2207–2215.
  • Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. J. Neel, R. B. Birge, J. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and L. C. Cantley. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778.
  • Songyang, Z., S. E. Shoelson, J. McGlade, P. Olivier, T. Pawson, X. R. Bustelo, M. Barbacid, H. Sabe, H. Hanafusa, T. Yi, R. Ren, D. Baltimore, S. Ratnofsky, R. A. Feldman, and L. C. Cantley. 1994. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps, fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14:2777–2785.
  • Soriano, P. 1994. Abnormal kidney development and hematological disorders in PDGF β-receptor mutant mice. Genes Dev. 8:1888–1896.
  • Stephenson, D. A., M. Mercola, E. Anderson, C. Wang, C. D. Stiles, D. F. Bowen-Pope, and V. M. Chapman. 1991. Platelet-derived growth factor receptor α-subunit gene (Pdgfra) is deleted in the mouse patch (Ph) mutation. Proc. Natl. Acad. Sci. USA 88:6–10.
  • Stockschlaeder, M. A., R. Storb, W. R. Osborne, and A. D. Miller. 1991. L-Histidinol provides effective selection of retrovirus-vector-transduced keratinocytes without impairing their proliferative potential. Hum. Gene Ther. 2:33–39.
  • Tang, T. L., R. M. J. Freeman, A. M. O’Reilly, B. G. Neel, and S. Y. Sokol. 1995. The SH2-containing protein tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell 80:473–483.
  • Valius, M., C. Bazenet, and A. Kazlauskas. 1993. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor β subunit and are required for binding of phospho-lipase Cγ and a 64-kilodalton protein, respectively. Mol. Cell. Biol. 13:133–143.
  • Valius, M., and A. Kazlauskas. 1993. Phospholipase C-71 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 73:321–334.
  • Vassbotn, F. S., M. Andersson, B. Westermark, C.-H. Heldin, and A. Ostman. 1993. Reversion of autocrine transformation by a dominant negative platelet-derived growth factor mutant. Mol. Cell. Biol. 13:4066–4076.
  • Vassbotn, F. S., A. Ostman, S. Siegbahn, H. Holmsen, and C.-H. Heldin. 1992. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types. J. Biol. Chem. 267:15635–15641.
  • Vogel, W., R. Lammers, J. Huang, and A. Ulrich. 1993. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259:1611–1614.
  • Xiao, S., D. W. Rose, T. Sasaoka, H. Maegawa, T. R. Burke, Jr., P. P. Roller, S. E. Shoelson, and J. M. Olefsky. 1994. Syp (SH-PTP2) is a positive mediator of growth factor-stimulated mitogenic signal transduction. J. Biol. Chem. 269:21244–21248.
  • Yamaguchi, K., K. Shirakabe, H. Shibuya, K. Irie, I. Oishi, N. Ueno, T. Taniguchi, E. Nishida, and K. Matsumoto. 1995. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270:2008–2011.
  • Yeh, H.-J., K. G. Ruit, Y.-X. Wang, W. C. Parks, W. D. Snider, and T. F. Deuel. 1991. PDGF A-chain gene is expressed by mammalian neurons during development and in maturity. Cell 64:209–216.
  • Yeh, H. J., I. Silos-Santiago, Y. X. Wang, R. J. George, W. D. Snider, and T. F. Deuel. 1993. Developmental expression of the platelet-derived growth factor alpha-receptor gene in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 90:1952–1956.
  • Yu, J.-C., J. S. Gutkind, D. Mahadevan, W. Li, K. A. Meyers, J. H. Pierce, and M. A. Heidaran. 1994. Biological function of PDGF-induced PI-3 kinases activity: its role in alpha PDGF receptor-mediated mitogenic or chemotactic signaling. J. Cell Biol. 127:479–487.
  • Yu, J.-C., M. A. Heidaran, J. H. Pierce, J. S. Gutkind, D. Lombardi, M. Ruggiero, and S. A. Aaronson. 1991. Tyrosine mutations within the α platelet-derived growth factor receptor kinase insert domain abrogate receptor-associated phosphatidylinositol-3 kinase activity without affecting mitogenic or chemotactic signal transduction. Mol. Cell. Biol. 11:3780–3785.
  • Yu, J.-C., W. Li, L.-M. Wang, A. Uren, J. H. Pierce, and M. A. Heidaran. 1995. Differential requirement of a motif within the carboxyl-terminal domain of the alpha-platelet-derived growth factor (alphaPDGF) receptor for PDGF focus forming activity, chemotaxis or growth. J. Biol. Chem. 270:7033–7036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.