11
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Requirements for Ectopic Homologous Recombination in Mammalian Somatic Cells

, , &
Pages 7122-7132 | Received 31 May 1996, Accepted 13 Sep 1996, Published online: 29 Mar 2023

REFERENCES

  • Ahn, B. Y., K. J. Dornfeld, T. J. Fagrelius, and D. M. Livingston. 1988. Effect of limited homology on gene conversion in a Saccharomyces cerevisiae plasmid recombination system. Mol. Cell. Biol. 8:2442–2448.
  • Ayares, D., L. Cherkuri, K.-Y. Song, and R. Kucherlapati. 1986. Homology requirements for intermolecular recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 83:5199–5203.
  • Baker, M. D. 1989. High-frequency homologous recombination between duplicate chromosomal immunoglobulin μ heavy-chain constant regions. Mol. Cell. Biol. 9:5500–5507.
  • Baker, M. D., N. Pennell, L. Bosnoyan, and M. J. Shulman. 1988. Homologous recombination can restore normal immunoglobulin production in a mutant hybridoma cell line. Proc. Natl. Acad. Sci. USA 85:6432–6436.
  • Baker, M. D., and L. R. Read. 1992. Ectopic recombination within homologous immunoglobulin μ gene constant regions in a mouse hybridoma cell line. Mol. Cell. Biol. 12:4422–4432.
  • Baker, M. D., and L. R. Read. 1993. Analysis of mutations introduced into the chromosomal immunoglobulin μ gene. Somatic Cell Mol. Genet. 19:299–311.
  • Baker, M. D., and L. R. Read. 1995. High-frequency gene conversion between repeated Cμ sequences integrated at the chromosomal immunoglobulin μ locus in mouse hybridoma cells. Mol. Cell. Biol. 15:766–771.
  • Baltimore, D. 1981. Gene conversion: some implications for immunoglobulin genes. Cell 24:592–594.
  • Barr, J., and M. J. Shulman. 1995. The Ig heavy chain switch region is a hotspot for insertion of transfected DNA. J. Immunol. 155:1911–1920.
  • Berinstein, N., N. Pennell, C. A. Ottaway, and M. J. Shulman. 1992. Gene replacement with one-sided homologous recombination. Mol. Cell. Biol. 12:360–367.
  • Boyle, A. L., D. M. Feltquite, N. C. Dracopoli, D. E. Housman, and D. C. Ward. 1992. Rapid physical mapping of cloned DNA on banded mouse chromosomes by fluorescence in-situ hybridization. Genomics 12:106–115.
  • Brenner, D. A., S. Kato, R. A. Anderson, A. C. Smigocki, and R. D. Camerini-Otero. 1984. The recombination and integration of DNAs introduced into mouse L cells. Cold Spring Harbor Symp. Quant. Biol. 49:151–160.
  • Connor, A., E. Wiersma, and M. J. Shulman. 1994. On the linkage between RNA processing and RNA translatability. J. Biol. Chem. 269:25178–25184.
  • De Saint Vincent, B. R., and G. M. Wahl. 1983. Homologous recombination in mammalian cells mediates formation of a functional gene from two overlapping gene fragments. Proc. Natl. Acad. Sci. USA 80:2002–2006.
  • Edelman, G. M., and J. A. Gally. 1970. Arrangement and evolution of eukaryotic genes, p. 962–972. In F. O. Schmitt (ed.), The neurosciences: second study program. Rockefeller University Press, New York.
  • Egel, R. 1981. Intergenic conversion and reiterated genes. Nature (London) 290:191–192.
  • Engels, W. R., C. R. Preston, and D. M. Johnson-Schlitz. 1994. Long-range cis preference in DNA homology search over the length of a Drosophila chromosome. Science 263:1623–1625.
  • Folger, K. R., E. A. Wong, G. Wahl, and M. Capecchi. 1982. Patterns of integration of DNA microinjected into cultured mammalian cells: evidence of homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol. 2:1372–1387.
  • Godwin, A. R., R. J. Bollag, D. Christie, and R. M. Liskay. 1994. Spontaneous and restriction enzyme-induced chromosomal recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91:12554–12558.
  • Gonda, D. K., and C. M. Radding. 1983. By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell 34:647–654.
  • Gross-Bellard, M., P. Oudet, and P. Chambon. 1973. Isolation of high-molecular weight DNA from mammalian cells. Eur. J. Biochem. 36:32–38.
  • Haber, J. E., W.-Y. Leung, R. H. Borts, and M. Lichten. 1991. The frequency of meiotic recombination in yeast is independent of the number and position of homologous donor sequences: implications for chromosome pairing. Proc. Natl. Acad. Sci. USA 88:1120–1124.
  • Hasty, P., J. Rivera-Perez, and A. Bradley. 1991. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11:5586–5591.
  • Haynes, R. H., and B. A. Kunz. 1981. DNA repair and mutagenesis, p. 371–414. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hood, L., J. H. Campbell, and S. C. R. Elgin. 1975. The organization, expression and evolution of antibody genes and other multigene families. Annu. Rev. Genet. 9:305–353.
  • Jasin, M., and P. Berg. 1988. Homologous integration in mammalian cells without target gene selection. Genes Dev. 2:1353–1363.
  • Kadyk, L. C., and L. H. Hartwell. 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402.
  • Köhler, G., M. J. Potash, H. Lehrach, and M. J. Shulman. 1982. Deletions in immunoglobulin mu chains. EMBO J. 1:555–563.
  • Köhler, G., and M. J. Shulman. 1980. Immunoglobulin M mutants. Eur. J. Immunol. 10:467–476.
  • Kucherlapati, R. S., D. Ayares, A. Hanneken, K. Noonan, S. Rauth, J. M. Spencer, L. Wallace, and P. D. Moore. 1984. Homologous recombination in monkey cells and human cell-free extracts. Cold Spring Harbor Symp. Quant. Biol. 49:191–197.
  • Kupiec, M., and T. D. Petes. 1988. Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2942–2954.
  • Lasko, D., W. Cavenee, and M. Nordenskjold. 1991. Loss of constitutional heterozygosity in human cancer. Annu. Rev. Genet. 25:281–314.
  • Lawrence, J. B. 1990. A fluorescence in-situ hybridization approach for gene mapping and the study of nuclear organization, p. 1–38. In K. Davies and S. Tilghman (ed.), Genome analysis, vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Lichten, M., and J. E. Haber. 1989. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123:261–268.
  • Lichter, P., C. J. Tang, K. Call, G. Hermanson, G. A. Evans, et al. 1990. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247:64–69.
  • Lin, F.-L., K. Sperle, and N. Sternberg. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role of DNA ends in the recombination process. Mol. Cell. Biol. 4:1020–1034.
  • Lin, F.-L., and N. Sternberg. 1984. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome. Mol. Cell. Biol. 4:852–861.
  • Liskay, R. M., A. Letsou, and J. L. Stachelek. 1987. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115:161–167.
  • Liskay, R. M., J. L. Stachelek, and A. Letsou. 1984. Homologous recombination between repeated chromosomal sequences in mouse cells. Cold Spring Harbor Symp. Quant. Biol. 49:183–189.
  • Meselson, M., and C. Radding. 1975. A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72:358–361.
  • Mézard, C., D. Pompon, and A. Nicolas. 1992. Recombination between similar but not identical DNA sequences during yeast transformation occurs within short stretches of identity. Cell 70:659–670.
  • Murti, J. R., M. Bumbulis, and J. C. Shimenti. 1994. Gene conversion between unlinked sequences in the germline of mice. Genetics 137:837–843.
  • Nassif, N., and W. Engels. 1993. DNA homology requirements for mitotic gap repair in Drosophila. Proc. Natl. Acad. Sci. USA 90:1262–1266.
  • Nickoloff, J. A. 1992. Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol. Cell. Biol. 12:5311–5318.
  • Ochi, A., R. G. Hawley, T. Hawley, M. J. Shulman, A. Traunecker, G. Köhler, and N. Hozumi. 1983. Functional immunoglobulin M production after transfection of cloned immunoglobulin heavy and light chain genes into lymphoid cells. Proc. Natl. Acad. Sci. USA 80:6351–6355.
  • Rabbitts, T. H. 1994. Chromosomal translocations and human cancer. Nature (London) 372:143–149.
  • Ramirez-Solis, R., P. Liu, and A. Bradley. 1995. Chromosome engineering in mice. Nature (London) 378:720–724.
  • Roeder, G. S., M. Smith, and E. J. Lambie. 1984. Intrachromosomal movement of genetically marked Saccharomyces cerevisiae transposons by gene conversion. Mol. Cell. Biol. 4:703–711.
  • Rouyer, F., M. Simmler, D. C. Page, and J. Weissenbach. 1987. A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell 51:417–425.
  • Rubnitz, J., and S. Subramani. 1984. The minimum amount of homology required for homologous recombination in monkey cells. Mol. Cell. Biol. 4:2253–2258.
  • Rubnitz, J., and S. Subramani. 1986. Extrachromosomal and chromosomal gene conversion in mammalian cells. Mol. Cell. Biol. 6:1608–1614.
  • Shen, P., and H. V. Huang. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441–457.
  • Shulman, M. J., C. Collins, A. Connor, L. R. Read, and M. D. Baker. 1995. Interchromosomal recombination is suppressed in mammalian somatic cells. EMBO J. 14:4102–4107.
  • Shulman, M. J., L. Nissen, and C. Collins. 1990. Homologous recombination in hybridoma cells: dependence on time and fragment length. Mol. Cell. Biol. 10:4466–4472.
  • Singer, B. S., L. Gold, P. Gauss, and D. H. Doherty. 1982. Determination of the amount of homology required for recombination in bacteriophage T4. Cell 31:25–33.
  • Slightom, J. L., A. E. Blechl, and O. Smithies. 1980. Human fetal Gγ and A7-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21:627–638.
  • Small, J., and G. Scangos. 1983. Recombination during gene transfer into mouse cells can restore the function of deleted genes. Science 219:174–176.
  • Smith, A. J. H., and P. Berg. 1984. Homologous recombination between defective neo genes in mouse 3T6 cells. Cold Spring Harbor Symp. Quant. Biol. 49:171–181.
  • Smith, G. P. 1973. Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symp. Quant. Biol. 38:507–513.
  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Southern, P. J., and P. Berg. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–341.
  • Stewart, S. E., and G. S. Roeder. 1989. Transcription by RNA polymerase I stimulates mitotic recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:3464–3472.
  • Stringer, J. R., R. M. Kuhn, J. L. Newman, and J. C. Meade. 1985. Unequal homologous recombination between tandemly arranged sequences stably incorporated into cultured rat cells. Mol. Cell. Biol. 5:2613–2622.
  • Sugawara, N., and J. E. Haber. 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:563–575.
  • Szostak, J. W., T. L. Orr-Weaver, and R. J. Rothstein. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Thomas, B. J., and R. Rothstein. 1989. Elevated recombination rates in transcriptionally-active DNA. Cell 56:619–630.
  • Thomas, K. R., C. Deng, and M. R. Capecchi. 1992. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell. Biol. 12:2919–2923.
  • Thomas, K. R., K. R. Folger, and M. R. Capecchi. 1986. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–428.
  • Trask, B. J., H. Massa, S. Kenwrick, and J. Gitschier. 1991. Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am. J. Hum. Genet. 48:1–15.
  • Trimble, W. S., M. D. Baker, G. L. Boulianne, H. Murialdo, N. Hozumi, and M. J. Shulman. 1986. Analysis of hybridoma mutants defective in synthesis of immunoglobulin M. Somatic Cell Mol. Genet. 12:467–477.
  • Voekel-Meiman, K., R. L. Keil, and G. S. Roeder. 1987. Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48:1071–1079.
  • Volkert, F. C., and C. S. H. Young. 1983. The genetic analysis of recombination using adenovirus overlapping terminal DNA fragments. Virology 125:175–193.
  • Wake, C., and J. Wilson. 1979. Simian virus 40 recombinants are produced at high frequency during infection with genetically mixed oligomeric DNA. Proc. Natl. Acad. Sci. USA 76:2876–2880.
  • Waldman, A. S., and R. M. Liskay. 1988. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8:5350–5357.
  • Watt, V. M., C. J. Ingles, M. S. Urdea, and W. J. Rutter. 1985. Homology requirements for recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 82:4768–4772.
  • White, M. A., M. Wierdl, P. Detloff, and T. D. Petes. 1991. DNA-binding protein RAP1 stimulates meiotic recombination at the His4 locus in yeast. Proc. Natl. Acad. Sci. USA 88:9755–9759.
  • Van der Engh, G., R. Sachs, and B. Trask. 1992. Estimating genomic distance from sequence location in cell nuclei by a random walk model. Science 257:1410–1412.
  • Yen, P. H., A. Tsai, S. L. Wenger, M. W. Steele, T. K. Mohandas, and L. J. Shapiro. 1991. X/Y translocations resulting from recombination between homologous sequences on Xp and Yp. Proc. Natl. Acad. Sci. USA 88:8944–8948.
  • Zheng, H., and J. H. Wilson. 1990. Gene targeting in normal and amplified cell lines. Nature (London) 344:170–173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.