5
Views
67
CrossRef citations to date
0
Altmetric
Research Article

Double Mutants of Saccharomyces cerevisiae with Alterations in Global Genome and Transcription-Coupled Repair

, , , , &
Pages 496-502 | Received 01 Aug 1995, Accepted 02 Nov 1995, Published online: 29 Mar 2023

REFERENCES

  • Aboussekhra, A., M. Biggerstaff, M. K. K. Shivji, J. A. Vilpo, V. Moncollin, V. N. Produst, M. Protić, U. Hübscher, J.-M. Egly, and R. D. Wood. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868.
  • Bang, D. D., R. Verhage, N. Goosen, J. Brouwer, and P. van de Putte. 1992. Molecular cloning of RAD16, a gene involved in differential repair in Saccharomyces cerevisiae. Nucleic Acids Res. 20:3925–3931.
  • Bankmann, M., L. Prakash, and S. Prakash. 1992. Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature (London) 355:555–558.
  • Bohr, V. A., C. A. Smith, D. S. Okumoto, and P. C. Hanawalt. 1985. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40: 359–369.
  • Donahue, B. A., S. Yin, J.-S. Taylor, D. Reines, and P. C. Hanawalt. 1994. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl. Acad. Sci. USA 91:8502–8506.
  • Drapkin, R., A. Sancar, and D. Reinberg. 1994. Where transcription meets repair. Cell 77:9–12.
  • Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA repair and mutagenesis. American Society for Microbiology, Washington, D.C.
  • Guzder, S. N., Y. Habraken, P. Sung, L. Prakash, and S. Prakash. 1995. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem. 270: 12973–12976.
  • Hanawalt, P. C., B. A. Donahue, and K. S. Sweder. 1994. Collision or collusion? Curr. Biol. 4:518–521.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and M. Grunstein. 1995. Histone H3 and H4 N-termini interact with Sir3 and Sir4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80:583–592.
  • Henning, K. A., L. Li, N. Iyer, L. D. McDaniel, M. S. Reagan, R. Legerski, R. A. Schultz, M. Stefanini, A. R. Lehmann, L. V. Mayne, and E. C. Fried-berg. 1995. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82:555–564.
  • Hoeijmakers, J. H. J. 1994. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur. J. Cancer 30A:1912–1921.
  • Kunala, S., and D. E. Brash. 1995. Intragenic domains of strand-specific repair in Escherichia coli. J. Mol. Biol. 246:264–272.
  • Leadon, S. A., and D. A. Lawrence. 1992. Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J. Biol. Chem. 267:23175–23182.
  • Mellon, I., and P. C. Hanawalt. 1989. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342:95–98.
  • Mellon, I. M., G. S. Spivak, and P. C. Hanawalt. 1987. Selective removal of transcription blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51:241–249.
  • Mu, D., C.-H. Park, T. Matsunaga, D. S. Hsu, J. T. Reardon, and A. Sancar. 1995. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270:2415–2418.
  • Nakabeppu, Y., K. Yamashita, and M. Sekiguchi. 1982. Purification and characterization of normal and mutant forms of T4endoV. J. Biol. Chem. 257:2556–2562.
  • Paetkau, D. W., J. A. Riese, W. S. MacMorran, R. A. Woods, and R. D. Gietz. 1994. Interaction of yeast RAD7 and SIR3 proteins: implications for DNA repair and chromatin structure. Genes Dev. 8:2035–2045.
  • Peterson, C. L., and J. W. Tamkun. 1995. The SWI/SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20:143–146.
  • Rothstein, R. J. .. 1983. One step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schaeffer, L., R. Roy, S. Humbert, V. Moncollin, W. Vermeulen, J. H. J. Hoeijmakers, P. Chambon, and J.-M. Egly. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63.
  • Selby, C. P., E. V. Witkin, and A. Sancar. 1991. E. coli mfd mutant deficient in ‘‘mutation frequency decline’’ lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc. Natl. Acad. Sci. USA 88: 11574–11578.
  • Selby, C. P., and A. Sancar. 1993. Molecular mechanism of transcription-repair coupling. Science 260:53–58.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Smerdon, M. J., and F. Thoma. 1990. Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 61:675–684.
  • St. John, T. P., and R. W. Davis. 1981. The organization and transcription of the galactose gene cluster of Saccharomyces. J. Mol. Biol. 152:285–315.
  • Svejstrup, J. Q., Z. Wang, W. J. Feaver, X. Wu, D. A. Bushnell, T. F. Donahue, E. C. Friedberg, and R. D. Kornberg. 1995. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80:21–28.
  • Sweder, K. S., and P. C. Hanawalt. 1992. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc. Natl. Acad. Sci. USA 89:10696–10700.
  • Terleth, C., P. Schenk, R. Poot, J. Brouwer, and P. van de Putte. 1990. Differential repair of UV damage in rad mutants of Saccharomyces cerevisiae: a possible function of G2 arrest upon UV irradiation. Mol. Cell. Biol. 10: 4678–4684.
  • Terleth, C., P. van de Putte, and J. Brouwer. 1990. New insights in DNA repair: preferential repair of transcriptionally active DNA. Mutagenesis 6:103–111.
  • Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma, and J. H. J. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71:939–953.
  • van Gool, A., R. Verhage, S. M. A. Swagemakers, P. van de Putte, J. Brouwer, C. Troelstra, D. Bootsma, and J. H. J. Hoeijmakers. 1994. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 13:5361–5369.
  • van Hoffen, A., A. T. Natarajan, L. V. Mayne, A. A. van Zeeland, L. H. F. Mullenders, and J. Venema. 1993. Deficient repair of the transcribed strand of active genes in Cockayne’s syndrome cells. Nucleic Acids Res. 21:5890–5895.
  • Venema, J., L. H. F. Mullenders, A. T. Natarajan, A. A. van Zeeland, and L. V. Mayne. 1990. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl. Acad. Sci. USA 87:4707–4711.
  • Venema, J., A. van Hoffen, V. Karcagi, A. T. Natarajan, A. A. van Zeeland, and L. H. F. Mullenders. 1991. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol. Cell. Biol. 11:4128–4134.
  • Verhage, R., A.-M. Zeeman, N. de Groot, F. Gleig, D. D. Bang, P. van de Putte, and J. Brouwer. 1994. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6135–6142.
  • Wang, Z., X. Wu, and E. C. Friedberg. Personal communication.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.