11
Views
54
CrossRef citations to date
0
Altmetric
Research Article

A Point Mutation in the Extracellular Domain Activates LET-23, the Caenorhabditis elegans Epidermal Growth Factor Receptor Homolog

, , , , &
Pages 529-537 | Received 10 May 1995, Accepted 07 Nov 1995, Published online: 29 Mar 2023

REFERENCES

  • Aroian, R. V., M. Koga, J. E. Mendel, Y. Ohshima, and P. W. Sternberg. 1990. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature (London) 348:693–699.
  • Aroian, R. V., G. M. Lesa, and P. W. Sternberg. 1994. Mutations in the Caenorhabditis elegans let-23 EGFR-like gene define elements important for cell-type specificity and function. EMBO J. 13:360–366.
  • Aroian, R. V., and P. W. Sternberg. 1991. Multiple functions of let-23, a C. elegans receptor tyrosine kinase gene required for vulval induction. Genetics 128:251–267.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1992. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York.
  • Avery, L., and H. R. Horvitz. 1987. A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 51:1071–1078.
  • Beitel, G., S. Clark, and H. R. Horvitz. 1990. The Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature (London) 348:503–509.
  • Bellot, F., W. Moolenaar, R. Kris, B. Mirakhur, I. Verlaan, A. Ullrich, J. Schlessinger, and S. Felder. 1990. High-affinity epidermal growth factor binding is specifically reduced by monoclonal antibody, and appears necessary for early responses. J. Cell Biol. 110:491–502.
  • Brenner, S.. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94.
  • Chamberlin, H., and P. W. Sternberg. 1994. The lin-3/let-23 pathway mediates inductive signalling during male spicule development in Caenorhabditis elegans. Development 120:2713–2721.
  • Clark, S. G., M. J. Stern, and H. R. Horvitz. 1992. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature (London) 356:340–344.
  • Coussens, L., T. L. Yang-Feng, Y.-C. Liao, E. Chen, A. Gray, J. McGrath, P. H. Seeburg, T. A. Libermann, J. Schlessinger, U. Francke, A. Levinson, and A. Ullrich. 1985. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230: 1132–1139.
  • Cross, J. C., Z. Werb, and S. J. Fisher. 1994. Implantation and the placenta—key pieces of the development puzzle. Science 266:1508–1518.
  • Darnell, J. E. J., I. M. Kerr, and G. R. Stark. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421.
  • Deng, W. P., and J. A. Nickoloff. 1992. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem. 200:81–88.
  • Dikic, I., J. Schlessinger, and I. Lax. 1994. PC12 cells overexpressing the insulin receptor undergo insulin-dependent neuronal differentiation. Curr. Biol. 4:702–708.
  • Fantl, W. J., D. E. Johnson, and L. T. Williams. 1993. Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 62:453–481.
  • Ferguson, E., and H. R. Horvitz. 1985. Identification and characterization of 22 genes that affect the vulval cell lineages of Caenorhabditis elegans. Genetics 110:17–72.
  • Ferguson, E. L., P. W. Sternberg, and H. R. Horvitz. 1987. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature (London) 326:259–267.
  • Han, M., R. Aroian, and P. W. Sternberg. 1990. The let-60 locus controls the switch between vulval and non-vulval cell types in C. elegans. Genetics 126: 899–913.
  • Han, M., A. Golden, Y. Han, and P. W. Sternberg. 1993. C. elegans lin-45 raf gene participates in let-60 ras stimulated vulval differentiation. Nature (London) 363:133–140.
  • Han, M., and P. W. Sternberg. 1990. let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 63:921–931.
  • Heldin, C.-H. 1995. Dimerization of cell surface receptors in signal transduction. Cell 80:213–223.
  • Herman, R. K. .. 1978. Crossover suppressors and balanced recessive lethals in Caenorhabditis elegans. Genetics 88:49–65.
  • Hill, R. J., and P. W. Sternberg. 1992. The lin-3 gene encodes an inductive signal for vulval development in C. elegans. Nature (London) 358:470–476.
  • Hodgkin, J.. 1985. Novel nematode amber suppressors. Genetics 111:287–310.
  • Hodgkin, J., H. R. Horvitz, and S. Brenner. 1979. Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91:67–94.
  • Honegger, A. M., T. J. Dull, S. Felder, E. Vanobberghen, F. Bellott, D. Szapary, A. Schmidt, A. Ullrich, and J. Schlessinger. 1987. Point mutation at the ATP binding-site of EGF receptor abolishes protein-tyrosine kinaseactivity and alters cellular routing. Cell 51:199–209.
  • Horvitz, H. R. .. 1990. Genetic control of Caenorhabditis elegans cell lineage. Harvey Lect. 84:65–77.
  • Horvitz, H. R., S. Brenner, J. Hodgkin, and R. K. Herman. 1979. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol. Gen. Genet. 175:129–133.
  • Horvitz, H. R., and P. W. Sternberg. 1991. Multiple intercellular signalling systems control the development of the C. elegans vulva. Nature (London) 351:535–541.
  • Horvitz, H. R., and J. E. Sulston. 1980. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96: 435–454.
  • Jiang, L.. Personal communication.
  • Jongeward, G. D., T. R. Clandinin, and P. W. Sternberg. 1995. sli-1, a negative regulator of let-23-mediated signaling in C. elegans. Genetics 139: 1553–1566.
  • Kamps, M. P., and B. M. Sefton. 1988. Identification of multiple novel polypeptide substrates of the v-src, v-yes, v-fps, v-ros, and v-erbB oncogenic tyrosine kinases utilizing antisera against phosphotyrosine. Oncogene 2:305–315.
  • Katz, W. S., and T. R. Clandinin. Unpublished observations.
  • Katz, W. S., R. J. Hill, T. R. Clandinin, and P. W. Sternberg. 1995. Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. Cell 82:297–307.
  • Khazaie, K., T. J. Dull, T. Graf, J. Schlessinger, A. Ullrich, H. Beug, and B. Vennström. 1988. Truncation of the human EGF receptor leads to differential transforming potentials in primary avian fibroblasts and erythroblasts. EMBO J. 7:3061–3071.
  • Kim, S. K., and H. R. Horvitz. 1990. The Caenorhabditis elegans gene lin-10 is broadly expressed while required specifically for the determination of vulval cell fates. Genes Dev. 4:357–371.
  • Kimble, J.. 1981. Lineage alterations after ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev. Biol. 87:286–300.
  • King, A. C., and P. J. Cuatrecasas. 1985. Resolution of high and low affinity epidermal growth factor receptors: inhibition of high affinity component by low temperature, cyclohiximide and phorbol esters. J. Biol. Chem. 257: 3053–3060.
  • Kornfeld, K., K.-L. Guan, and H. R. Horvitz. 1995. The Caenorhabditis elegans gene mek-2 is required for vulval induction and encodes a protein similar to the protein kinase MEK. Genes Dev. 9:756–768.
  • Kretz, K. A., G. S. Carson, and J. S. O’Brien. 1989. Direct sequencing from low-melting agarose with Sequenase. Nucleic Acids Res. 17:5864.
  • Kris, R. M., I. Lax, W. Gullick, M. D. Waterfield, A. Ullrich, M. Fridkin, and J. Schlessinger. 1985. Antibodies against a synthetic peptide as a probe for the kinase activity of the avian EGF receptor and v-erbB protein. Cell 40: 619–625.
  • Kung, H. J., C. M. Chang, and R. J. Pelley. 1994. Structural basis of oncogenic activation of EGF-receptor, p. 19–45. In T. Pretlow (ed.), Biochemical and molecular aspects of selected cancers. Academic Press, Inc., New York.
  • Lackner, M. R., K. Kornfeld, L. M. Miller, H. R. Horvitz, and S. K. Kim. 1994. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev. 8:160–173.
  • Livneh, E., L. Glazer, D. Segal, J. Schlessinger, and B. Shilo. 1985. The Drosophila EGF receptor homolog: conservation of both hormone binding and kinase domains. Cell 40:599–607.
  • Livneh, E., R. Prywes, O. Kashles, N. Reiss, I. Sasson, Y. Mory, A. Ullrich, and J. Schlessinger. 1986. Reconstitution of human epidermal growth factor receptors in cultured hamster cells. J. Biol. Chem. 261:12490–12497.
  • Lowenstein, E. J., R. J. Daly, A. G. Batzer, W. Li, B. Margolis, R. Lammers, A. Ullrich, E. Y. Skolnik, D. Bar-Sagi, and J. Schlessinger. 1992. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70:431–442.
  • Mello, C. C., J. M. Kramer, D. Stinchcomb, and V. Ambros. 1991. Efficient gene transfer in C. elegans after microinjection of DNA into germline cytoplasm: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10:3959–3970.
  • Pear, W. S., G. P. Nolan, M. L. Scott, and D. Baltimore. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396.
  • Plowman, G. D., J.-M. Culouscou, G. S. Whitney, J. M. Green, G. W. Carlton, L. Foy, M. G. Neubauer, and M. Shoyab. 1993. Ligand-specific activation of HER4/p180erb4, a fourth member of the epidermal growth factor receptor family. Proc. Natl. Acad. Sci. USA 90:1746–1750.
  • Plowman, G. D., G. S. Whitney, M. G. Neubauer, J. M. Green, V. L. McDonald, G. J. Todaro, and M. Shoyab. 1990. Molecular cloning and expression of an additional epidermal growth factor-related gene. Proc. Natl. Acad. Sci. USA 87:4905–4909.
  • Price, J. V., R. J. Clifford, and T. Schüpbach. 1989. The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homolog. Cell 56:1085–1092.
  • Rogalski, T. M., A. M. E. Bullerjahn, and D. L. Riddle. 1988. Lethal and amanitin-resistance mutations in the Caenorhabditis elegans ama-1 and ama-2 genes. Genetics 120:409–422.
  • Roussel, M. F., J. R. Downing, C. W. Rettenmier, and C. J. Sherr. 1988. A point mutation in the extracellular domain of the human CSF-1 receptor (c-fms proto-oncogene product) activates its transforming potential. Cell 55: 979–988.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schlessinger, J.. 1988. Signal transduction by allosteric receptor oligomerization. Trends Biochem. Sci. 13:443–447.
  • Schlessinger, J., and A. Ullrich. 1992. Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391.
  • Shoyab, C. M., J. E. DeLarco, and G. J. Todaro. 1979. Biologically active phorbol esters specifically alter affinity of epidermal growth factor receptors. Nature (London) 279:387–391.
  • Siegel, P. M., D. L. Dankort, W. R. Hardy, and W. J. Muller. 1994. Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol. Cell. Biol. 14:7068–7077.
  • Sorokin, A., M. A. Lemmon, A. Ullrich, and J. Schlessinger. 1994. Stabilization of an active dimeric form of the epidermal growth factor receptor by introduction of an inter-receptor disulfide bond. J. Biol. Chem. 269:9752–9759.
  • Sprenger, F., and C. Nüsslein-Volhard. 1992. Torso receptor activity is regulated by a diffusible ligand produced at the extracellular terminal regions of the Drosophila egg. Cell 71:987–1001.
  • Stern, M. J., L. E. M. Marengere, R. J. Daly, E. J. Lowenstein, M. Kokel, A. Batzer, P. Olivier, T. Pawson, and J. Schlessinger. 1993. The human GRB2 and Drosophila Drk genes can functionally replace the Caenorhabditis elegans cell signaling gene sem-5. Mol. Biol. Cell 4:1175–1188.
  • Sternberg, M. J. E., and W. J. Gullick. 1989. Neu receptor dimerization. Nature (London) 339:587.
  • Sternberg, P. W. .. 1993. Intercellular signaling and signal transduction in C. elegans. Annu. Rev. Genet. 27:497–521.
  • Sternberg, P. W., and H. R. Horvitz. 1986. Pattern formation during vulval development in Caenorhabditis elegans. Cell 44:761–772.
  • Sternberg, P. W., and H. R. Horvitz. 1989. The combined action of two intercellular signalling pathways specifies three cell fates during vulval induction in C. elegans. Cell 58:679–693.
  • Sulston, J., and H. R. Horvitz. 1977. Postembryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56:110–156.
  • Sulston, J. E., and H. R. Horvitz. 1981. Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev. Biol. 82:41–55.
  • Sulston, J. E., and J. G. White. 1980. Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Dev. Biol. 78:577–597.
  • Traverse, S., S. Klaus, H. Paterson, C. J. Marshall, P. Cohen, and A. Ullrich. 1994. EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr. Biol. 4:694–701.
  • Ullrich, A., L. Coussens, J. S. Hayflick, T. J. Dull, A. Gray, A. W. Tam, J. Lee, Y. Yarden, T. A. Libermann, J. Schlessinger, J. Downward, E. L. V. Mayes, N. Whittle, M. D. Waterfield, and P. H. Seeburg. 1984. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature (London) 309: 418–425.
  • Ullrich, A., and J. Schlessinger. 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212.
  • Wadsworth, S. C., W. S. Vincent III, and D. Bilodeau-Wentworth. 1985. A Drosophila genomic sequence with homology to human epidermal growth factor receptor. Nature (London) 314:178–180.
  • Weiner, D. B., J. Liu, J. A. Cohen, W. V. Williams, and M. I. Greene. 1989. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature (London) 339:230–231.
  • Wigler, M., R. Sweet, G. K. Sim, B. Wold, A. Pellicer, E. Lacy, T. Maniatis, S. Silverstein, and R. Axel. 1979. Transformation of mammalian cells with genes from procaryotes and leukocytes. Cell 16:777–785.
  • Woolford, J., A. McAuliffe, and L. R. Rohrschneider. 1988. Activation of the feline c-fms proto-oncogene: multiple alterations are required to generate a fully transformed phenotype. Cell 55:965–977.
  • Wu, Y., and M. Han. 1994. Suppression of activated Let-60 Ras protein defines a role of C. elegans Sur-1 MAP kinase in vulval differentiation. Genes Dev. 8:147–159.
  • Wu, Y., M. Han, and K.-L. Guan. 1995. MEK-2, a Caenorhabditis elegans MAP kinase kinase, functions in Ras-mediated vulval induction and other developmental events. Genes Dev. 9:724–755.
  • Youssoufian, H., G. Longmore, D. Neumann, A. Yoshimura, and H. Lodish. 1993. Structure, function, and activation of the erythropoietin receptor. Blood 81:2223–2236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.