15
Views
105
CrossRef citations to date
0
Altmetric
Research Article

A Conserved Proline-Rich Region of the Saccharomyces cerevisiae Cyclase-Associated Protein Binds SH3 Domains and Modulates Cytoskeletal Localization

, , , , , , & show all
Pages 548-556 | Received 07 Feb 1995, Accepted 08 Nov 1995, Published online: 29 Mar 2023

REFERENCES

  • Adams, A. E. M., J. A. Cooper, and D. G. Drubin. 1993. Unexpected combinations of null mutations in genes encoding the actin cytoskeleton are lethal in yeast. Mol. Biol. Cell 4:459–468.
  • Amberg, D. C., E. Basart, and D. Botstein. 1995. Defining the protein interactions with yeast actin in vivo. Nat. Struct. Biol. 2:28–35.
  • Bar-Sagi, D., D. Rotin, A. Batzer, V. Mandiyan, and J. Schlessinger. 1993. SH3 domains direct cellular localization of signaling molecules. Cell 74: 83–91.
  • Bauer, F., M. Urdaci, M. Aigle, and M. Crouzet. 1993. Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and budding patterns. Mol. Cell. Biol. 13:5070–5084.
  • Boguski, M., and F. McCormick. 1993. Proteins regulating Ras and its relatives. Nature (London) 366:643–654.
  • Bradford, M. M. .. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Broek, D., T. Toda, T. Michaeli, L. Levin, C. Birchmeier, M. Zoller, S. Powers, and M. Wigler. 1987. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799.
  • Camonis, J. H., M. Kalekin, B. Gondre, H. Garreau, E. Boy-Marcotte, and M. Jacquet. 1986. Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. EMBO J. 5:375–380.
  • Chalfie, M.. Personal communication.
  • Cicchetti, P., B. J. Mayer, G. Thiel, and D. Baltimore. 1992. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257:803–806.
  • Cohen, G. B., R. Ren, and D. Baltimore. 1995. Modular binding domains in signal transduction proteins. Cell 80:237–248.
  • De Vendittis, E., A. Vitelli, R. Zahn, and O. Fasano. 1986. Suppression of defective RAS1 and RAS2 functions in yeast by an adenylate cyclase activated by a single amino acid change. EMBO J. 5:3657–3663.
  • Drubin, D. G., K. G. Miller, and D. Botstein. 1988. Yeast actin-binding proteins: evidence for a role in morphogenesis. J. Cell Biol. 107:2551–2561.
  • Drubin, D. G., J. Mulholland, Z. Zhu, and D. Botstein. 1990. Homology of a yeast actin-binding protein to signal transduction proteins and myosin-1. Nature (London) 343:288–290.
  • Egan, S. E., and R. A. Weinberg. 1993. The pathway to signal achievement. Nature (London) 365:781–783.
  • Engelberg, D., G. Simchen, and A. Levitzki. 1990. In vitro reconstitution of CDC25 regulated S. cerevisiae adenylyl cyclase and its kinetic properties. EMBO J. 9:641–651.
  • Fedor-Chaiken, M., R. J. Deschenes, and J. R. Broach. 1990. SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61:329–340.
  • Fenger, U., M. Hofmann, B. Galliot, and H. C. Schaller. 1994. The role of the cAMP pathway in mediating the effect of head activator on nerve-cell determination and differentiation in hydra. Mech. Dev. 47:115–125.
  • Field, J., D. Broek, T. Kataoka, and M. Wigler. 1987. Guanine nucleotide activation of, and competition between, RAS proteins from Saccharomyces cerevisiae. Mol. Cell. Biol. 7:2128–2133.
  • Field, J., J. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I. A. Wilson, R. A. Lerner, and M. Wigler. 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8:2159–2165.
  • Field, J., A. Vojtek, R. Ballester, G. Bolger, J. Colicelli, K. Ferguson, J. Gerst, T. Kataoka, T. Michaeli, S. Powers, M. Riggs, L. Rodgers, I. Wieland, B. Wheland, and M. Wigler. 1990. Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Cell 61:319–327.
  • Franz, W. M., P. Berger, and J. Y. J. Wang. 1989. Deletion of an N-terminal regulatory domain of the c-abl tyrosine kinase activates its oncogenic potential. EMBO J. 8:137–147.
  • Freeman, N. L., Z. Chen, J. Horenstein, A. Weber, and J. Field. 1995. An actin monomer binding activity localizes to the carboxyl half of the Saccharomyces cerevisiae cyclase associated protein. J. Biol. Chem. 270:5680–5695.
  • Gerst, J. E., K. Ferguson, A. Vojtek, M. Wigler, and J. Field. 1991. CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex. Mol. Cell. Biol. 11:1248–1257.
  • Gieselmann, R., and K. Mann. 1992. ASP-56, a new actin sequestering protein from pig platelets with homology to CAP, an adenylylate cyclase-associated protein from yeast. FEBS Lett. 298:149–153.
  • Guthrie, C., and G. R. Fink (ed.). 1991. Methods in enzymology, vol. 194. Guide to yeast genetics and molecular biology. Academic Press, Inc., New York.
  • Haarer, B. K., A. S. Petzold, and S. S. Brown. 1993. Mutational analysis of yeast profilin. Mol. Cell. Biol. 13:7864–7873.
  • Holtzman, D. A., S. Yang, and D. G. Drubin. 1993. Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J. Cell Biol. 122:635–644.
  • Jackson, P., and D. Baltimore. 1989. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. EMBO J. 8: 449–456.
  • Kawamukai, M., J. Gerst, J. Field, M. Riggs, L. Rodgers, M. Wigler, and D. Young. 1992. Genetic and biochemical analysis of the adenylyl cyclase-associated protein, cap, in Schizosaccharomyces pombe. Mol. Biol. Cell 3:167–180.
  • Kilmartin, J. V., and A. E. M. Adams. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98:922–933.
  • Matviw, H., G. Yu, and D. Young. 1992. Identification of a human cDNA encoding a protein that is structurally and functionally related to the yeast adenylyl cyclase-associated CAP proteins. Mol. Cell. Biol. 12:5033–5040.
  • Mintzer, K. A., and J. Field. 1994. Interactions between adenylyl cyclase, CAP and RAS from Saccharomyces cerevisiae. Cell. Signalling 6:681–694.
  • Mulholland, J., D. Preuss, A. Moon, A. Wong, D. Drubin, and D. Botstein. 1994. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125:381–391.
  • Pardo, L. A., P. S. Lazo, and S. Ramos. 1993. Activation of adenylate cyclase in cdc25 mutants of Saccharomyces cerevisiae. FEBS Lett. 319:237–243.
  • Pawson, T., and J. Schlessinger. 1993. SH2 and SH3 domains. Curr. Biol. 3: 434–442.
  • Ren, R., B. J. Mayer, P. Cicchetti, and D. Baltimore. 1993. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259:1157–1161.
  • Robinson, L. C., J. B. Gibbs, M. S. Marshall, I. S. Sigal, and K. Tatchell. 1987. CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science 235:1218–1221.
  • Rotin, D., D. Bar-Sagi, H. O’Brodovich, J. Merilainen, V. P. Lehto, C. M. Canessa, B. C. Rossier, and G. P. Downey. 1994. An SH3 binding region in the epithelial Na + channel (αrENaC) mediates its localization at the apical membrane. EMBO J. 13:4440–4450.
  • Salomon, Y., C. Londos, and M. Rodbell. 1974. A highly sensitive adenylate cyclase assay. Anal. Biochem. 58:541–548.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Smith, D. B., and K. S. Johnson. 1988. Single step purification of polypeptides expressed in Escherichia coli as fusion proteins with glutathione S-transferase. Gene 67:31–40.
  • Tanaka, K., M. Nakafuku, T. Satoh, M. S. Marshall, J. B. Gibbs, K. Matsumoto, Y. Kaziro, and A. Toh-e. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60:803–807.
  • Toda, T., I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto, and M. Wigler. 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36.
  • Vojtek, A., B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. Brown, and M. Wigler. 1991. Evidence for a functional link between profilin and CAP in the yeast S. cerevisiae. Cell 66:497–505.
  • Vojtek, A. B., and J. A. Cooper. 1993. Identification and characterization of a cDNA encoding mouse CAP: a homolog of the yeast adenylyl cyclase associated protein. J. Cell Sci. 105:777–785.
  • Wang, J., N. Suzuki, and T. Kataoka. 1992. The 70-kilodalton adenylyl cyclase-associated protein is not essential for interaction of Saccharomyces cerevisiae adenylyl cyclase with RAS proteins. Mol. Cell. Biol. 12:4937–4945.
  • Wang, J., N. Suzuki, Y. Nishida, and T. Kataoka. 1993. Analysis of the function of the 70-kilodalton cyclase-associated protein (CAP) by using mutants of yeast adenylyl cyclase defective in CAP binding. Mol. Cell. Biol. 13:4087–4097.
  • Yu, G., J. Swiston, and D. Young. 1994. Comparison of human CAP and CAP2, homologs of the yeast adenylyl cyclase-associated proteins. J. Cell Sci. 107:1671–1678.
  • Yu, H., J. K. Chen, S. Feng, D. C. Dalgarno, A. W. Brauer, and S. L. Schrelber. 1994. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76:933–945.
  • Zelicof, A., J. Gatica, and J. E. Gerst. 1993. Molecular cloning and characterization of a rat homolog of CAP, the adenylyl cyclase-associated protein from Saccharomyces cerevisiae. J. Biol. Chem. 268:13448–13453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.