4
Views
45
CrossRef citations to date
0
Altmetric
Research Article

BETA3, a Novel Helix-Loop-Helix Protein, Can Act as a Negative Regulator of BETA2 and MyoD-Responsive Genes

, , , , &
Pages 626-633 | Received 14 Jul 1995, Accepted 13 Nov 1995, Published online: 29 Mar 2023

REFERENCES

  • Akazawa, C., M. Ishibashi, C. Shimizu, S. Nakanishi, and R. Kageyama. 1995. A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270:8730–8738.
  • Aplan, P. D., K. Nakahara, S. H. Orkin, and I. R. Kirsch. 1992. The SCL gene product: a positive regulator of erythroid differentiation. EMBO J. 11:4047–4081.
  • Aronheim, A., H. Ohlsson, C. W. Park, T. Edlund, and M. D. Walker. 1991. Distribution and characterization of helix-loop-helix enhancer binding proteins from pancreatic β cells and lymphocytes. Nucleic Acids Res. 19:3893–3899.
  • Begley, C. G., P. D. Aplan, S. M. Denning, B. F. Haynes, T. A. Waldmann, and I. R. Kirsch. 1989. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc. Natl. Acad. Sci. USA 86:10128–10132.
  • Begley, C. G., S. Lipkowitz, V. Göbel, K. A. Mahon, V. Bertness, A. R. Green, N. M. Gough, and I. R. Kirsch. 1992. Molecular characterization of NSCL, a gene encoding a helix-loop-helix protein expressed in the developing nervous system. Proc. Natl. Acad. Sci. USA 89:38–42.
  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59.
  • Boam, D. S. W., A. R. Clark, and K. Docherty. 1990. Positive and negative regulation of the human insulin gene by multiple trans-acting factors. J. Biol. Chem. 265:8285–8296.
  • Brown, L., and R. Baer. 1994. HEN1 encodes a 20-kilodalton phosphoprotein that binds an extended E-box motif as a homodimer. Mol. Cell. Biol. 14:1245–1255.
  • Catron, K. M., H. Zhang, S. C. Marshall, J. A. Inostroza, J. M. Wilson, and C. Abate. 1995. Transcriptional repression by Msx-1 does not require home-odomain DNA-binding sites. Mol. Cell. Biol. 15:861–871.
  • Chaney, W. G., D. R. Howard, J. W. Pollard, S. Sallustio, and P. Stanley. 1986. High-frequency transfection of CHO cells using polybrene. Somatic Cell Mol. Genet. 12:237–244.
  • Cordle, S. R., E. Henderson, H. Masucha, P. A. Weil, and R. Stein. 1991. Pancreatic β-cell-type-specific transcription of the insulin gene is mediated by basic helix-loop-helix DNA-binding proteins. Mol. Cell. Biol. 11:1734–1738.
  • Crowe, D. T., and M.-J. Tsai. 1989. Mutagenesis of the rat insulin II 5′-flanking region defines sequences important for expression in HIT cells. Mol. Cell. Biol. 9:1784–1789.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Davis, R. L., P.-F. Cheng, A. B. Lassar, and H. Weintraub. 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60:733–746.
  • de Pablo, F., and E. J. de la Rosa. 1995. The developing CNS: a scenario for the action of proinsulin, insulin, and insulin-like growth factors. Trends Neurosci. 18:143–150.
  • Edmondson, D. G., and E. N. Olson. 1989. A single gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3:628–640.
  • Ellenberger, T., D. Fass, M. Arnaud, and S. C. Harrison. 1994. Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev. 8:970–980.
  • Fairman, R., R. K. Beran-Steed, S. J. Anthony-Cahill, J. D. Lear, W. F. Stafford III, W. F. DeGrado, P. A. Benfield, and S. L. Brenner. 1993. Multiple oligomeric states regulate the DNA binding of helix-loop-helix peptides. Proc. Natl. Acad. Sci. USA 90:10429–10433.
  • German, M., S. Ashcroft, K. Docherty, H. Edlund, T. Edlund, S. Goodison, G. Kennedy, O. Madsen, D. Melloul, L. Moss, K. Olson, A. Permutt, J. Phillippe, R. P. Robertson, W. J. Rutter, P. Serup, R. Stein, D. Steiner, M.-J. Tsai, and M. D. Walker. 1995. The insulin gene promoter: a simplified nomenclature. Diabetes 44:1002–1004.
  • German, M. S., M. A. Blanar, C. Nelson, L. G. Moss, and W. J. Rutter. 1991. Two related helix-loop-helix proteins participate in separate cell-specific complexes that bind the insulin enhancer. Mol. Endocrinol. 5:292–299.
  • Gilman, M.. 1987. Ribonuclease protection assay, p. 4.7.1–4.7.8. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology. John Wiley & Sons, New York.
  • Gobel, V., S. Lipkowitz, C. A. Kozak, and I. R. Kirsch. 1992. NSCL-2: a basic domain helix-loop-helix gene expressed in early neurogenesis. Cell Growth Differ. 3:143–148.
  • Han, K., and J. L. Manley. 1993. Functional domains of the Drosophila Engrailed protein. EMBO J. 12:2723–2733.
  • Han, K., and J. L. Manley. 1993. Transcription repression by the Drosophila Even-skipped protein: definition of a minimal repression domain. Genes Dev. 7:491–503.
  • Henthorn, P., M. Kiledjian, and T. Kadesch. 1990. Two distinct transcription factors that bind the immunoglobulin enhancer mE5/kE2 motif. Science 247:467–470.
  • Hollenberg, S. M., R. Sternglanz, P. F. Cheng, and H. Weintraub. 1995. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15:3813–3822.
  • Hopwood, N. D., A. Pluck, and J. B. Gurdon. 1989. A Xenopus mRNA related to Drosophila twist is expressed in response to induction in the mesoderm and the neural crest. Cell 59:893–903.
  • Hsu, H.-L., J.-T. Cheng, Q. Chen, and R. Baer. 1991. Enhancer-binding activity of the tal-1 oncoprotein in association with the E47/E12 helix-loophelix proteins. Mol. Cell. Biol. 11:3037–3042.
  • Hsu, H.-L., L. Huang, J. T. Tsan, W. Funk, W. E. Wright, J.-S. Hu, R. E. Kingston, and R. Baer. 1994. Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins. Mol. Cell. Biol. 14:1256–1265.
  • Hu, J.-S., E. N. Olson, and R. E. Kingston. 1992. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol. Cell. Biol. 12:1031–1042.
  • Hwung, Y.-P., D. T. Crowe, L.-H. Wang, S. Y. Tsai, and M.-J. Tsai. 1988. The COUP transcription factor binds to an upstream promoter element of the rat insulin II gene. Mol. Cell. Biol. 8:2070–2077.
  • Hwung, Y.-P., Y.-Z. Gu, and M.-J. Tsai. 1990. Cooperativity of sequence elements mediates tissue specificity of the rat insulin II gene. Mol. Cell. Biol. 10:1784–1788.
  • Jarman, A. P., Y. Grau, L. Y. Jan, and Y. N. Jan. 1993. atonal is a proneural gene that directs organ formation in the Drosophila peripheral nervous system. Cell 73:1307–1321.
  • Jen, Y., H. Weintraub, and R. Benezra. 1992. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 6:1466–1479.
  • Johnson, J. E., S. J. Birren, and D. J. Anderson. 1990. Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature (London) 346:858–861.
  • Karlsson, L., T. Edlund, J. B. Moss, W. J. Rutter, and M. D. Walker. 1987. A mutational analysis of the insulin gene transcription control region; expression in beta cells is dependent on two related sequences within the enhancer. Proc. Natl. Acad. Sci. USA 84:8819–8823.
  • Kozak, M.. 1987. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15:8125–8132.
  • Lassar, A. B., R. L. Davis, W. E. Wright, T. Kadesch, C. Murre, A. Voronova, D. Baltimore, and H. Weintraub. 1991. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66:305–315.
  • Lee, J. E., S. M. Hollenberg, L. Snider, D. L. Turner, N. Lipnick, and H. Weintraub. 1995. Conversion of Xenopus ectoderm into neurons by neuroD, a basic helix-loop-helix protein. Science 268:836–844.
  • Licht, J. D., M. J. Grossel, J. Figge, and U. M. Hansen. 1990. Drosophila Kruppel protein is a transcriptional repressor. Nature (London) 346:76–79.
  • Madden, S. L., D. M. Cook, and F. J. Tauscher III. 1993. A structure-function analysis of transcriptional repression mediated by the WT1, Wilms tumor suppressor protein. Oncogene 8:1713–1720.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mellentin, J. D., S. D. Smith, and M. L. Cleary. 1989. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 58:77–83.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD and myc proteins. Cell 56:777–783.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.
  • Murre, C., A. Voronova, and D. Baltimore. 1991. B-cell- and myocyte-specific E2-box-binding factors contain E12/E47-like subunits. Mol. Cell. Biol. 11: 1156–1160.
  • Naya, F. J., C. M. M. Stellrecht, and M.-J. Tsai. 1995. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 8:1009–1019.
  • Nelson, C., L.-P. Shen, A. Meister, E. Fodor, and W. J. Rutter. 1990. Pan: a transcriptional regulator that binds chymotrypsin, insulin, and AP-4 enhancer motifs. Genes Dev. 4:1035–1043.
  • Ohsako, S., J. Hyer, G. Panganiban, I. Oliver, and M. Caudy. 1994. hairy functions as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev. 8:2743–2755.
  • Peyton, M., L. Moss, and M.-J. Tsai. 1994. Two distinct class A helix-loop-helix transcription factors, E2A and BETA1, form separate DNA binding complexes on the insulin gene E-box. J. Biol. Chem. 269:25936.
  • Rashbass, J., M. V. Taylor, and J. B. Gurdon. 1992. The DNA-binding protein E12 co-operates with XMyoD in the activation of muscle-specific gene expression in Xenopus embryos. EMBO J. 11:2981–2990.
  • Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullins, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491.
  • Santerre, R. F., R. A. Cook, R. M. D. Crisel, J. D. Sharp, R. J. Schmidt, D. C. Williams, and C. P. Wilson. 1981. Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc. Natl. Acad. Sci. USA 78:4339–4343.
  • Seed, B., and J.-Y. Sheen. 1988. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene 67:271–277.
  • Shieh, S.-Y., and M.-J. Tsai. 1991. Cell-specific and ubiquitous factors are responsible for the enhancer activity of the rat insulin II gene. J. Biol. Chem. 266:16707–16714.
  • Steiner, D. F., S. J. Chan, J. M. Welsh, and S. C. M. Kwok. 1985. Structure and evolution of the insulin gene. Annu. Rev. Genet. 19:463–484.
  • Stellrecht, C. M. M., F. J. Naya, H.-P. Huang, M. Peyton, and M.-T. Tsai. Unpublished data.
  • Sternberg, E. A., G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896–2909.
  • Sun, X.-H., and D. Baltimore. 1991. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64:459–470.
  • Thisse, B., C. Stoetzel, C. Gorostiza-Thisse, and F. Perrin-Schmitt. 1988. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J. 7:2175–2183.
  • Van Doren, M., H. Ellis, and J. W. Posakony. 1991. The Drosophila extram-acrochaetae protein antagonizes sequence-specific DNA binding by daughterless/achaete-scute protein complexes. Development 113:245–255.
  • Van Doren, M., A. M. Bailey, J. Esnayra, K. Ede, and J. W. Puma. 1994. Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. Genes Dev. 8:2729–2742.
  • Villares, R., and C. V. Cabrera. 1987. The achaete-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50:415–424.
  • Voronova, A., and D. Baltimore. 1990. Mutations that disrupt DNA binding and dimer formation in the E47 helix-loop-helix protein map to distinct domains. Proc. Natl. Acad. Sci. USA 87:4722–4726.
  • Walker, M. D., C. W. Park, A. Rosen, and A. Aronheim. 1990. A cDNA from a mouse pancreatic β cell encoding a putative transcription factor of the insulin gene. Nucleic Acids Res. 18:1159–1166.
  • Wang, Y., B. W. O’Malley, Jr., S. Y. Tsai, and B. W. O’Malley. 1994. A regulatory system for use in gene transfer. Proc. Natl. Acad. Sci. USA 91:8180–8184.
  • Whelan, J., D. Poon, P. A. Weil, and R. Stein. 1989. Pancreatic β-cell-type-specific expression of the rat insulin II gene is controlled by positive and negative cellular transcriptional elements. Mol. Cell. Biol. 9:3253–3259.
  • Wolf, C., C. Thisse, C. Stoetzel, B. Thisse, P. Gerlinger, and F. Perrin-Schmitt. 1991. The m-twist gene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus x-twist and the Drosophila twist genes. Dev. Biol. 143:363–373.
  • Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607–617.
  • Xia, Y., L. Brown, C. Y.-C. Yang, J. T. Tsan, M. J. Siciliano, R. Espinosa III, M. M. LeBeau, and R. J. Baer. 1991. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc. Natl. Acad. Sci. USA 88:11416–11420.
  • Zhang, Y., J. Babin, A. L. Feldhaus, H. Singh, P. A. Sharp, and M. Bina. 1991. HTF4: a new human helix-loop-helix protein. Nucleic Acids Res. 19:4555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.