19
Views
113
CrossRef citations to date
0
Altmetric
Research Article

Paf1p, an RNA Polymerase II-Associated Factor in Saccharomyces cerevisiae, May Have both Positive and Negative Roles in Transcription

, , , , &
Pages 669-676 | Received 22 Jun 1995, Accepted 21 Nov 1995, Published online: 29 Mar 2023

REFERENCES

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Baker, S. M., P. G. Okkema, and J. A. Jaehning. 1984. Expression of the Saccharomyces cerevisiae GAL7 gene on autonomous plasmids. Mol. Cell. Biol. 4:2062–2071.
  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and M. Ptashne. 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Barton, A. B., and D. B. Kaback. 1994. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: analysis of the genes in the FUN38-MAK16-SPO7 region. J. Bacteriol. 176:1872–1880.
  • Bender, A., and G. F. J. Sprague. 1987. MAT a1 protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes. Cell 50:681–691.
  • Bussey, H., D. B. Kaback, W.-W. Zhong, D. T. Vo, M. W. Clark, N. Fortin, J. Hall, B. F. F. Ouellette, T. Keng, A. B. Barton, Y. Su, C. J. Davies, and R. K. Storms. 1995. The nucleotide sequence of chromosome I from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 92:3809–3813.
  • Chasman, D. I., N. F. Lue, A. R. Buchman, J. W. LaPointe, Y. Lorch, and R. D. Kornberg. 1990. A yeast protein that influences the chromatin structure of UASg and functions as a powerful auxiliary gene activator. Genes Dev. 4:503–514.
  • Chen, J.-L., L. D. Attardi, C. P. Verrijzer, K. Yokomori, and R. Tjian. 1994. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79:93–105.
  • Chen, S., R. W. West, Jr., S. L. Johnson, H. Gans, B. Kruger, and J. Ma. 1993. TSF3, a global regulatory protein that silences transcription of yeast GAL genes, also mediates repression by a2 repressor and is identical to SIN4. Mol. Cell. Biol. 13:831–840.
  • Chen, S. C., R. W. West, Jr., J. Ma, S. L. Johnson, H. Gans, and G. Woldehawariat. 1993. TSF1 to TSF6, required for silencing the Saccharomyces cerevisiae GAL genes, are global regulatory genes. Genetics 134:701–716.
  • Conaway, R. C., and J. W. Conaway. 1993. General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62:161–190.
  • Didichenko, S. A., M. D. Ter-Avanesyan, and V. N. Smirnov. 1991. Ribosome-bound EF-1a-like protein of yeast Saccharomyces cerevisiae. Eur. J. Biochem. 198:705–711.
  • Earnshaw, W. C. .. 1987. Anionic regions in nuclear proteins. J. Cell Biol. 105:1479–1482.
  • Edelman, A. M., D. K. Blumenthal, and E. G. Krebs. 1987. Protein serine/ threonine kinases. Annu. Rev. Biochem. 56:567–613.
  • Eisenmann, D. M., C. Chapon, S. M. Roberts, C. Dollard, and F. Winston. 1994. The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics 137:647–657.
  • Elder, R. T., E. Y. Loh, and R. W. Davis. 1983. RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA 80:2432–2436.
  • Fassler, J. S., and F. Winston. 1989. The Saccharomyces cerevisiae SPT13/ GAL11 gene has both positive and negative regulatory roles in transcription. Mol. Cell. Biol. 9:5602–5609.
  • Gansheroff, L. J., C. Dollard, P. Tan, and F. Winston. 1995. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics 139:523–536.
  • Giniger, E., S. M. Varnum, and M. Ptashne. 1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774.
  • Guarente, L., R. R. Yocum, and P. Gifford. 1982. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79:7410–7414.
  • Guthrie, C., and G. R. Fink (ed.). 1991. Guide to yeast genetics and molecular biology. Methods Enzymol. 194:3–37.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hengartner, C. J., C. M. Thompson, J. Zhang, D. M. Chao, S.-M. Liao, A. J. Koleske, S. Okamura, and R. A. Young. 1995. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9:897–910.
  • Himmelfarb, H. J., J. Pearlberg, D. H. Last, and M. Ptashne. 1990. GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators. Cell 63:1299–1309.
  • Holmstrom, K., T. Brandt, and T. Kallesoe. 1994. The sequence of a 32420 bp segment located on the right arm of chromosome II from Saccharomyces cerevisiae. Yeast 10:s47–s62.
  • Huet, J., and A. Sentenac. 1987. TUF, the yeast DNA-binding factor specific for UASrpg upstream activating sequences: identification of the protein and its DNA-binding domain. Proc. Natl. Acad. Sci. USA 84:3648–3652.
  • Jiang, Y. W., P. R. Dohrmann, and D. J. Stillman. 1995. Genetic and physical interaction between yeast RGR1 and SIN4 in chromatin organization and transcriptional regulation. Genetics 140:47–54.
  • Jiang, Y. W., and D. J. Stillman. 1992. Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4503–4514.
  • Johnston, M., and M. Carlson. 1992. Regulation of carbon and phosphate utilization, p. 193–281. In E. W. Jones, J. R. Pringle, and J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Karlin, S.. 1993. Unusual charge configurations in transcription factors of the basic RNA polymerase II initiation complex. Proc. Natl. Acad. Sci. USA 90:5593–5597.
  • Keleher, C. A., C. Goutte, and A. D. Johnson. 1988. The yeast cell-type-specific repressor alpha 2 acts cooperatively with a non-cell-type-specific protein. Cell 53:927–936.
  • Kim, Y.-J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal domain of RNA polymerase II. Cell 77:599–608.
  • Koleske, A. J., and R. A. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature (London) 368:466–469.
  • Kuchin, S., P. Yeghiayan, and M. Carlson. 1995. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc. Natl. Acad. Sci. USA 92:4006–4010.
  • Liang, P., and A. B. Pardee. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971.
  • Liao, S.-M., J. Zhang, D. A. Jeffery, A. J. Koleske, C. M. Thompson, D. M. Chao, M. Viljoen, H. J. J. van Vuuren, and R. A. Young. 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature (London) 374: 193–196.
  • Malone, E. A., C. D. Clark, A. Chiang, and F. Winston. 1991. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:5710–5717.
  • Miller, J. H.. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Nishizawa, M., Y. Suzuki, Y. Nogi, K. Matsumoto, and T. Fukasawa. 1990. Yeast Gal11 protein mediates the transcriptional activation signal of two different transacting factors, Gal4 and general regulatory factor I/repressor/ activator site binding protein 1/translation upstream factor. Proc. Natl. Acad. Sci. USA 87:5373–5377.
  • Nonet, M. L., and R. A. Young. 1989. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123:715–724.
  • Peterson, C. L., and J. W. Tamkun. 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20:143–146.
  • Reed, S. I., J. Ferguson, and K. Y. Jahng. 1988. Isolation and characterization of two genes encoding yeast mating pheromone signaling elements: CDC72 and CDC73. Cold Spring Harbor Symp. Quant. Biol. 53:621–627.
  • Rogers, S., R. Wells, and M. Rechsteiner. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368.
  • Rothstein, R. J. .. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–209.
  • Rowley, A., R. A. Singer, and G. C. Johnston. 1991. CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol. Cell. Biol. 11:5718–5726.
  • Sakurai, H., Y. Hiraoka, and T. Fukasawa. 1993. Yeast Gal11 protein is a distinctive type transcription factor that enhances basal transcription in vitro. Proc. Natl. Acad. Sci. USA 90:8382–8386.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shi, X., M. Chang, P. A. Wade, A. J. Wolf, J. A. Sherman, C. Chang, Z. F. Burton, and J. A. Jaehning. Unpublished observations.
  • Shi, X., M. R. Parthun, and J. A. Jaehning. 1995. The yeast EGD2 gene encodes a homologue of the aNAC subunit of the human nascent-polypeptide-associated complex. Gene 165:199–202.
  • Shore, D., and K. A. Nasmyth. 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732.
  • Shore, D., D. J. Stillman, A. H. Brand, and K. A. Nasmyth. 1987. Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication. EMBO J. 6:461–467.
  • Struhl, K.. 1985. Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-ded1 gene region. Nucleic Acids Res. 13:8587–8601.
  • Suzuki, Y., Y. Nogi, A. Abe, and T. Fukasawa. 1988. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4991–4999.
  • Swaffield, J. C., J. F. Bromberg, and S. A. Johnston. 1992. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature (London) 357:698–700.
  • Swanson, M. S., M. Carlson, and F. Winston. 1990. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol. Cell. Biol. 10:4935–4941.
  • Swanson, M. S., E. A. Malone, and F. Winston. 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11: 3009–3019.
  • Tjian, R., and T. Maniatis. 1994. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77:5–8.
  • Ulery, T. L., S.-H. Jang, and J. A. Jaehning. 1994. Glucose repression of yeast mitochondrial transcription: kinetics of derepression and role of nuclear genes. Mol. Cell. Biol. 14:1160–1170.
  • Vidal, M., R. Strich, R. E. Esposito, and R. F. Gaber. 1991. RPD1 (SIN3/ UME4) is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11:6306–6316.
  • Wade, P. A., W. Werel, R. C. Fentzke, N. E. Thompson, J. F. Leykam, R. R. Burgess, J. A. Jaehning, and Z. F. Burton. A novel collection of accessory factors associated with yeast RNA polymerase II. Submitted for publication.
  • Wahi, M., and A. D. Johnson. 1995. Identification of genes required for a2 repression in Saccharomyces cerevisiae. Genetics 140:79–90.
  • Wang, B. Q., C. F. Kostrub, A. Finkelstein, and Z. F. Burton. 1993. Production of human RAP30 and RAP74 in bacterial cells. Protein Expr. Purif. 4:207–214.
  • Wang, H., I. Clark, P. R. Nicholson, I. Herskowitz, and D. J. Stillman. 1990. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol. Cell. Biol. 10:5927–5936.
  • Wang, H., P. R. Nicholson, and D. J. Stillman. 1990. Identification of a yeast DNA-binding protein involved in transcriptional regulation. Mol. Cell. Biol. 10:1743–1753.
  • Wickner, R. B.. 1988. Host function of MAK16: G1 arrest by a mak16 mutant of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 85:6007–6011.
  • Wickner, R. B., T. J. Koh, J. C. Crowley, J. O’Neil, and D. B. Kaback. 1987. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation of the MAK16 gene and analysis of an adjacent gene essential for growth at low temperatures. Yeast 3:51–57.
  • Winston, F., and M. Carlson. 1992. Yeast SNF/SWItranscriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8:387–391.
  • Woontner, M., X. Shi, and J. A. Jaehning. Unpublished observations.
  • Woontner, M., P. A. Wade, J. J. Bonner, and J. A. Jaehning. 1991. Transcriptional activation in an improved whole-cell extract from Saccharomyces cerevisiae. Mol. Cell. Biol. 11:4555–4560.
  • Xu, Q., G. C. Johnston, and R. A. Singer. 1993. The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing. Mol. Cell. Biol. 13:7553–7565.
  • Yoshimoto, H., M. Ohmae, and I. Yamashita. 1992. The Saccharomyces cerevisiae GAM2/SIN3 protein plays a role in both activation and repression of transcription. Mol. Gen. Genet. 233:327–330.
  • Zawel, L., and D. Reinberg. 1993. Initiation of transcription by RNA polymerase II: a multi-step process. Prog. Nucleic Acid Res. 44:67–108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.