17
Views
158
CrossRef citations to date
0
Altmetric
Research Article

Mitotic Crossovers between Diverged Sequences Are Regulated by Mismatch Repair Proteins in Saccharomyces cerevisiae

, , , &
Pages 1085-1093 | Received 10 Oct 1995, Accepted 05 Dec 1995, Published online: 29 Mar 2023

REFERENCES

  • Ahn, B.-Y., K. J. Dornfeld, T. J. Fagrelius, and D. M. Livingston. 1988. Effect of limited homology on gene conversion in a Saccharomyces cerevisiae plasmid recombination system. Mol. Cell. Biol. 8:2442–2448.
  • Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545.
  • Alani, E., N.-W. Chi, and R. Kolodner. 1995. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and insertions. Genes Dev. 9:234–247.
  • Alani, E., R. A. G. Reenan, and R. D. Kolodner. 1994. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137:19–39.
  • Bailis, A. M., and R. Rothstein. 1990. A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process. Genetics 126:535–547.
  • Baltimore, D. 1981. Gene conversion: some implications for immunoglobulin genes. Cell 24:592–594.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Bronner, C. E., S. M. Baker, P. T. Morrison, G. Warren, L. G. Smith, M. K. Lescoe, M. Kane, C. Earabino, J. Lipford, A. Lindblom, P. Tannergard, R. J. Bollag, A. R. Godwin, D. C. Ward, M. Nordenskjold, R. Fishel, R. Kolodner, and R. M. Liskay. 1994. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature (London) 368:258–261.
  • Datta, A., and S. Jinks-Robertson. Unpublished data.
  • Deng, C., and M. R. Capecchi. 1992. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12:3365–3371.
  • Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • Drummond, J. T., G.-M. Li, M. J. Longley, and P. Modrich. 1995. Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268:1909–1912.
  • Edelman, G. M., and J. A. Gally. 1970. Arrangement and evolution of eukaryotic genes, p. 962–972. In F. O. Schmitt (ed.), The neurosciences: second study program. Rockefeller University Press, New York.
  • Feinstein, S. I., and K. B. Low. 1986. Hyper-recombining recipient strains in bacterial conjugation. Genetics 113:13–33.
  • Fishel, R., M. K. Lescoe, M. R. S. Rao, N. G. Copeland, N. A. Jenkins, J. Garber, M. Kane, and R. Kolodner. 1993. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038.
  • Harris, S., K. S. Rudnicki, and J. E. Haber. 1993. Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae. Genetics 135:5–16.
  • Holliday, R. 1964. A mechanism for gene conversion in fungi. Genet. Res. 5:282–304.
  • Hollingsworth, N. M., L. Ponte, and C. Halsey. 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9:1728–1739.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jinks-Robertson, S., M. Michelitch, and S. Ramcharan. 1993. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:3937–3950.
  • Klein, H. L. 1988. Recombination between repeated yeast genes, p. 385–421. In K. B. Low (ed.), The recombination of genetic material. Academic Press, San Diego, Calif.
  • Kramer, B., W. Kramer, M. S. Williamson, and S. Fogel. 1989. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Mol. Cell. Biol. 9:4432–4440.
  • Kramer, W., B. Kramer, M. S. Williamson, and S. Fogel. 1989. Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic MutL and HexB. J. Bacteriol. 171:5339–5346.
  • Larionov, V., N. Kouprina, M. Eldarov, E. Perkins, G. Porter, and M. A. Resnick. 1994. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks. Yeast 10:93–104.
  • Lea, D. E., and C. A. Coulson. 1949. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–284.
  • Leach, F. S., N. C. Nicolaides, N. Papadopoulos, B. Liu, J. Jen, R. Parsons, P. Peltomaki, P. Sistoene, L. A. Aaltonen, M. Nystrom-Lahti, X.-Y. Guan, J. Zhang, P. S. Meltzer, J.-W. Yu, F.-T. Kao, D. J. Chen, K. M. Cerosaletti, R. E. K. Fournier, S. Todd, T. Lewis, R. J. Leach, S. L. Naylor, J. Weissenbach, J.-P. Mecklin, H. Jarvinen, G. M. Petersen, S. R. Hamilton, J. Green, J. Jass, P. Watson, H. T. Lynch, J. M. Trent, A. de la Chapelle, K. W. Kinzler, and B. Vogelstein. 1993. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 17:1215–1225.
  • Lichten, M., and J. E. Haber. 1989. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123:261–268.
  • Liskay, R. M., A. Letsou, and J. L. Stachelek. 1987. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115:161–167.
  • Maizels, N. 1989. Might gene conversion be the mechanism of somatic hypermutation of mammalian immunoglobulin genes? Trends Genet. 5:4–8.
  • Matic, I., C. Rayssiguier, and M. Radman. 1995. Interspecies gene exchange in bacteria: the role of SoS and mismatch repair systems in evolution of species. Cell 80:507–515.
  • Meselson, M. S., and C. M. Radding. 1975. A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72:358–361.
  • Mezard, C., and A. Nicolas. 1994. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol. Cell. Biol. 14:1278–1292.
  • Mezard, C., D. Pompon, and A. Nicolas. 1992. Recombination between similar but not identical DNA sequences during yeast transformation occurs within short stretches of identity. Cell 70:659–670.
  • Miret, J. J., M. G. Milla, and R. S. Lahue. 1993. Characterization of a DNA mismatch-binding activity in yeast extracts. J. Biol. Chem. 268:3507–3513.
  • Modrich, P. 1991. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25:229–253.
  • Monteiro, M. J., and D. W. Cleveland. 1988. Sequence of the chicken cβ2 tubulin: analysis of a complete set of vertebrate β-tubulin isotypes. J. Mol. Biol. 199:439–446.
  • New, L., K. Liu, and G. F. Crouse. 1993. The yeast gene MSH3 defines a new class of eukaryotic MutS homologues. Mol. Gen. Genet. 239:97–108.
  • Palombo, F., P. Gallinari, I. Iaccarino, T. Lettieri, M. Hughes, A. D’Arrigo, O. Truong, J. J. Hsuan, and J. Jiricny. 1995. GTBP, 160 kd protein essential for mismatch-binding activity in human cells. Science 268:1912–1914.
  • Papadopoulos, N., N. C. Nicolaides, B. Liu, R. Parsons, C. Lengauer, F. Palombo, A. D’Arrigo, S. Markowitz, J. K. V. Willson, K. W. Kinzler, J. Jiricny, and B. Vogelstein. 1995. Mutations of GTBP in genetically unstable cells. Science 268:1915–1916.
  • Petes, T. D., and C. W. Hill. 1988. Recombination between repeated genes in microorganisms. Annu. Rev. Genet. 22:147–168.
  • Petes, T. D., R. E. Malone, and L. S. Symington. 1991. Recombination in yeast, p. 407–521. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Petit, M.-A., J. Dimpfl, M. Radman, and H. Echols. 1991. Control of large chromosomal duplications in Escherichia coli by the mismatch repair system. Genetics 129:327–332.
  • Priebe, S. D., J. Westmoreland, T. Nilsson-Tillgren, and M. A. Resnick. 1994. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair. Mol. Cell. Biol. 14:4802–4814.
  • Prolla, T. A., D.-M. Christie, and R. M. Liskay. 1994. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol. Cell. Biol. 14:407–415.
  • Prolla, T. A., Q. Pang, E. Alani, R. D. Kolodner, and R. M. Liskay. 1994. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science 265:1091–1093.
  • Radman, M. 1988. Mismatch repair and genetic recombination, p. 169–192. In R. Kucherlapati and G. R. Smith (ed.), Genetic recombination. American Society for Microbiology, Washington, D.C.
  • Radman, M. 1991. Avoidance of inter-repeat recombination by sequence divergence and a mechanism of neutral evolution. Biochimie 73:357–361.
  • Rattray, A. J., and L. S. Symington. 1994. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 138:587–595.
  • Rayssiguier, C., D. S. Thaler, and M. Radman. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature (London) 342:396–401.
  • Reenan, R. A. G., and R. D. Kolodner. 1992. Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132:963–973.
  • Reenan, R. A. G., and R. D. Kolodner. 1992. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochrondrial and nuclear functions. Genetics 132:975–985.
  • Resnick, M. A., Z. Zgaga, P. Hieter, J. Westmoreland, S. Fogel, and T. Nilsson-Tillgren. 1992. Recombinational repair of diverged DNAs: a study of homeologous chromosomes and mammalian YACs in yeast. Mol. Gen. Genet. 234:65–73.
  • Ross-Macdonald, P., and G. S. Roeder. 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sancar, A., and J. E. Hearst. 1993. Molecular matchmakers. Science 259:1415–1420.
  • Selva, E. M., L. New, G. F. Crouse, and R. S. Lahue. 1995. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139:1175–1188.
  • Shen, M. R., and P. L. Deininger. 1992. An in vivo assay for measuring the recombination potential between DNA sequences in mammalian cells. Anal. Biochem. 205:83–89.
  • Shen, P., and H. V. Huang. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441–457.
  • Shen, P., and H. V. Huang. 1989. Effect of base pair mismatches on recom bination via the RecBCD pathway. Mol. Gen. Genet. 218:358–360.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–20.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Strand, M., M. C. Earley, G. F. Crouse, and T. D. Petes. 1995. Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 92:10418–10421.
  • Strand, M., T. A. Prolla, R. M. Liskay, and T. D. Petes. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature (London) 365:274–276.
  • Struhl, K. 1984. Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence. Proc. Natl. Acad. Sci. USA 81:7865–7869.
  • Sugawara, N., E. L. Ivanov, J. Fishman-Lobell, B. L. Ray, X. Wu, and J. E. Haber. 1995. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature (London) 373:84–86.
  • Sullivan, K. F., J. T. Y. Lau, and D. W. Cleveland. 1985. Apparent gene conversion between β-tubulin genes yields multiple regulatory pathways for a single β-tubulin polypeptide isotype. Mol. Cell. Biol. 5:2454–2465.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Waldman, A. S., and R. M. Liskay. 1987. Differential effects of base-pair mismatch on intrachromosomal versus extrachromosomal recombination in mouse cells. Proc. Natl. Acad. Sci. USA 84:5340–5344.
  • Waldman, A. S., and R. M. Liskay. 1988. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8:5350–5357.
  • Williamson, M. S., J. C. Game, and S. Fogel. 1985. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics 110:609–646.
  • Woolford, J. L., Jr. 1989. Nuclear pre-mRNA splicing in yeast. Yeast 5:439457.
  • Worth, L., Jr., S. Clark, M. Radman, and P. Modrich. 1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc. Natl. Acad. Sci. USA 91:3238–3241.
  • Yoshimatsu, T., and F. Nagawa. 1989. Control of gene expression by artificial introns in Saccharomyces cerevisiae. Science 244:1346–1348.
  • Zahart, T. C., G. C. Mora, and S. Maloy. 1994. Inactivation of mismatch repair overcomes the barrier to transduction between Salmonella typhimurium and Salmonella typhi. J. Bacteriol. 176:1527–1529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.