14
Views
74
CrossRef citations to date
0
Altmetric
Research Article

Synthetic Enhancement of a TFIIB Defect by a Mutation in SSU72, an Essential Yeast Gene Encoding a Novel Protein That Affects Transcription Start Site Selection In Vivo

&
Pages 1557-1566 | Received 14 Nov 1995, Accepted 23 Jan 1996, Published online: 29 Mar 2023

REFERENCES

  • Allison, L. A., M. Moyle, M. Shales, and C. J. Ingles. 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42:599–610.
  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Archambault, J., and J. D. Friesen. 1993. Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol. Rev. 57:703–724.
  • Berroteran, R. W., D. E. Ware, and M. Hampsey. 1994. The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations. Mol. Cell. Biol. 14:226–237.
  • Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast:5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Buratowski, S. 1994. The basics of basal transcription by RNA polymerase II. Cell 77:1–3.
  • Buratowski, S., S. Hahn, L. Guarente, and P. A. Sharp. 1989. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549–561.
  • Buratowski, S., and H. Zhou. 1993. Functional domains of transcription factor TFIIB. Proc. Natl. Acad. Sci. USA 90:5633–5637.
  • Chang, C., C. F. Kostrub, and Z. F. Burton. 1993. RAP30/74 (transcription factor IIF) is required for promoter escape by RNA polymerase II. J. Biol. Chem. 268:20482–20489.
  • Chibazakura, T., S. Kitajima, M. Yonaha, and Y. Yasukochi. 1994. Enhancement of bacterial transcription initiation in vitro by the 74 kDa subunit of human general transcription factor IIF (RAP74). Biochim. Biophys. Acta 1219:592–600.
  • Conaway, R. C., and J. W. Conaway. 1993. General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62:161–190.
  • Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16:6127–6145.
  • Eisenmann, D. M., K. M. Arndt, S. L. Ricupero, J. W. Rooney, and F. Winston. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6:1319–1331.
  • Eisenmann, D. M., C. Chapon, S. M. Roberts, C. Dollard, and F. Winston. 1994. The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics 137:647–657.
  • Eisenmann, D. M., C. Dollard, and F. Winston. 1989. SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58:1183–1191.
  • Feaver, W. J., N. L. Henry, D. A. Bushnell, M. H. Sayre, J. H. Brickner, O. Gileadi, and R. D. Kornberg. 1994. Yeast TFIIE—cloning, expression, and homology to vertebrate proteins. J. Biol. Chem. 269:27549–27553.
  • Flores, O., H. Lu, M. Killeen, J. Greenblatt, Z. F. Burton, and D. Reinberg. 1991. The small subunit of transcription factor IIF recruits RNA polymerase II into the preinitiation complex. Proc. Natl. Acad. Sci. USA 88:9999–10003.
  • Foreman, P. K., and R. W. Davis. 1994. Cloning vectors for the synthesis of epitope-tagged, truncated and chimeric proteins in Saccharomyces cerevisiae. Gene 144:63–68.
  • Frankel, A. D., D. S. Bredt, and C. O. Pabo. 1988. Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240:70–73.
  • Furter-Graves, E. M., B. D. Hall, and R. Furter. 1994. Role of a small RNA pol II subunit in TATA to transcription start site spacing. Nucleic Acids Res. 22:4932–4936.
  • Gansheroff, L. J., C. Dollard, P. Tan, and F. Winston. 1995. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics 139:523–536.
  • Geisberg, J. V., W. S. Lee, A. J. Berk, and R. P. Ricciardi. 1994. The zinc finger region of the adenovirus E1A transactivating domain complexes with the TATA box binding protein. Proc. Natl. Acad. Sci. USA 91:2488–2492.
  • Gietz, D., A. St. John, R. A. Woods, and R. H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
  • Gietz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Gill, G., and R. Tjian. 1992. Eukaryotic coactivators associated with the TATA box binding protein. Curr. Opin. Genet. Dev. 2:236–242.
  • Goodrich, J. A., and R. Tjian. 1994. TBP-TAF complexes: selectivity factors for eukaryotic transcription. Curr. Opin. Cell Biol. 6:403–409.
  • Goodrich, J. A., and R. Tjian. 1994. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77:145–156.
  • Guarente, L. 1993. Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet. 9:362–366.
  • Hahn, S., S. Buratowski, P. A. Sharp, and L. Guarente. 1989. Isolation of the gene encoding the yeast TATA binding protein TFIID: a gene identical to the SPT15 suppressor of Ty element insertions. Cell 58:1173–1181.
  • Hoffman, C., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Horiuchi, J., N. Silverman, G. A. Marcus, and L. Guarente. 1995. ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol. Cell. Biol. 15:1203–1209.
  • Hull, M. W., K. Mckune, and N. A. Woychik. 1995. RNA polymerase II subunit RPB9 is required for accurate start site selection. Genes Dev. 9:481–490.
  • Johnson, P. F., and S. L. McKnight. 1989. Eukaryotic transcriptional regulatory proteins. Annu. Rev. Biochem. 58:799–839.
  • Killeen, M., B. Coulombe, and J. Greenblatt. 1992. Recombinant TBP, transcription factor IIB, and RAP30 are sufficient for promoter recognition by mammalian RNA polymerase II. J. Biol. Chem. 267:9463–9466.
  • Kim, Y.-J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Koleske, A. J., S. Buratowski, M. Nonet, and R. A. Young. 1992. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69:883–894.
  • Koleske, A. J., and R. A. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature (London) 368:466–469.
  • Li, Y., P. M. Flanagan, H. Tschochner, and R. D. Kornberg. 1994. RNA polymerase II initiation factor interactions and transcription start site selection. Science 263:805–807.
  • Liao, S. M., J. H. Zhang, D. A. Jeffrey, A. J. Koleske, C. M. Thompson, D. M. Chao, M. Viljoen, H. J. J. Vanvuuren, and R. A. Young. 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature (London) 374:193–196.
  • Mandel, M., and A. Higa. 1970. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 53:159–162.
  • McDonnell, D. P., J. W. Pike, D. J. Drutz, T. R. Butt, and B. W. O’Malley. 1989. Reconstitution of the vitamin D-responsive osteocalcin transcription unit in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:3517–3523.
  • Mengus, G., M. May, X. Jacq, A. Staub, L. Tora, P. Chambon, and I. Davidson. 1995. Cloning and characterization of hTAF(II)18, hTAF(II)20 and hTAF(II)28: three subunits of the human transcription factor TFIID. EMBO J. 14:1520–1531.
  • Mikaelian, I., and A. Sergeant. 1992. A general and fast method to generate multiple site directed mutations. Nucleic Acids Res. 20:376–377.
  • Na, J. G., and M. Hampsey. 1993. The Kluyveromyces gene encoding the general transcription factor IIB: structural analysis and expression in Saccharomyces cerevisiae. Nucleic Acids Res. 21:3413–3417.
  • Nikolov, D. B., H. Chen, E. D. Halay, A. A. Usheva, K. Hisatake, D. K. Lee, R. G. Roeder, and S. K. Burley. 1995. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature (London) 377:119–128.
  • Nonet, M. L., and R. A. Young. 1989. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123:715–724.
  • Ossipow, V., J.-P. Tassan, E. A. Nigg, and U. Schibler. 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Paranjape, S. M., R. T. Kamakaka, and J. T. Kadonaga. 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297.
  • Pause, A., N. Methot, and N. Sonenberg. 1993. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 13:6789–6798.
  • Pinto, I., D. E. Ware, and M. Hampsey. 1992. The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 68:977–988.
  • Pinto, I., W. H. Wu, J. G. Na, and M. Hampsey. 1994. Characterization of sua7 mutations defines a domain of TFIIB involved in transcription start site selection in yeast. J. Biol. Chem. 269:30569–30573.
  • Ptashne, M., and A. A. F. Gann. 1990. Activators and targets. Nature (London) 346:329–331.
  • Qian, X., C. Jeon, H. Yoon, K. Agarwal, and M. A. Weiss. 1993. Structure of a new nucleic-acid-binding motif in eukaryotic transcriptional elongation factor TFIIS. Nature (London) 365:277–279.
  • Roberts, S. G. E., and M. R. Green. 1994. Activator-induced conformational change in general transcription factor TFIIB. Nature (London) 371:717–720.
  • Rose, M. D., and J. R. Broach. 1991. Cloning genes by complementation in yeast. Methods Enzymol. 194:195–230.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–21.
  • Sherman, F., and J. Hicks. 1991. Micromanipulation and dissection of asci. Methods Enzymol. 194:21–37.
  • Sikorski, R. S., and J. B. Boeke. 1991. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 194:302–318.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sun, Z.-W. Unpublished data.
  • Sun, Z. W., and M. Hampsey. 1995. Identification of the gene (SSU71/TFG1) encoding the largest subunit of transcription factor TFIIF as a suppressor of a TFIIB mutation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 92:3127–3131.
  • Sun, Z. W., and M. Hampsey. 1995. SSU71, encoding the largest subunit of TFIIF, is located on the right arm of chromosome VII in Saccharomyces cerevisiae. Yeast 11:789–791.
  • Sun, Z.-W., A. Tessmer, and M. Hampsey. Submitted for publication.
  • Sweetser, D., M. Nonet, and R. A. Young. 1987. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc. Natl. Acad. Sci. USA 84:1192–1196.
  • Thompson, C. M., A. J. Koleske, D. M. Chao, and R. A. Young. 1993. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73:1361–1375.
  • Treich, I., M. Riva, and A. Sentenac. 1991. Zinc-binding subunits of yeast RNA polymerases. J. Biol. Chem. 266:21971–21976.
  • Tyree, C. M., C. P. George, L. M. Lira-DeVito, S. L. Wampler, M. E. Dahmus, L. Zawel, and J. T. Kadonaga. 1993. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev. 7:1254–1265.
  • Van Dyke, M. W., R. G. Roeder, and M. Sawadogo. 1988. Physical analysis of transcription preinitiation complex assembly on a class II gene promoter. Science 241:1335–1338.
  • Winston, F. 1992. Analysis of SPT genes: a genetic approach toward analysis of TFIID, histones and other transcription factors of yeast, p. 1271–1293. In S. L. McKnight and K. R. Yamamoto (ed.), Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Woolford, J. L., Jr. 1991. The structure and biogenesis of yeast ribosomes. Adv. Genet. 29:63–118.
  • Woychik, N. A., W. S. Lane, and R. A. Young. 1991. Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes. J. Biol. Chem. 266:19053–19055.
  • Woychik, N. A., and R. A. Young. 1990. RNA polymerase II subunit RPB10 is essential for yeast cell viability. J. Biol. Chem. 265:17816–17819.
  • Zawel, L., and D. Reinberg. 1993. Initiation of transcription by RNA poly-merase II: a multi-step process. Prog. Nucleic Acid Res. 44:67–108.
  • Zawel, L., and D. Reinberg. 1995. Common themes in assembly and function of eukaryotic transcription complexes. Annu. Rev. Biochem. 64:533–561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.