0
Views
38
CrossRef citations to date
0
Altmetric
Research Article

A Three-Step Pathway of Transcription Initiation Leading to Promoter Clearance at an Activated RNA Polymerase II Promoter

, &
Pages 1614-1621 | Received 30 Oct 1995, Accepted 11 Jan 1996, Published online: 29 Mar 2023

REFERENCES

  • Bunick, D., R. Zandomeni, S. Ackerman, and R. Weinmann. 1982. Mechanism of RNA polymerase II-specific initiation of transcription in vitro: ATP required and uncapped runoff transcripts. Cell 29:877–886.
  • Cadena, L. D., and M. E. Dahmus. 1987. Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II. J. Biol. Chem. 262:12468–12474.
  • Carey, M., J. Leatherwood, and M. Ptashne. 1990. A potent GAL4 derivative activates transcription at a distance in vitro. Science 247:710–712.
  • Carey, M., Y.-S. Lin, M. R. Green, and M. Ptashne. 1990. A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature (London) 345:361–364.
  • Carpousis, A. J., and J. D. Gralla. 1985. Interaction of RNA polymerase with lac UV5 promoter DNA during mRNA initiation and elongation. Footprint-ing, methylation, and rifampicin-sensitivity changes accompanying transcription initiation. J. Mol. Biol. 183:165–177.
  • Conaway, R. C., and J. W. Conaway. 1988. ATP activates transcription initiation from promoters by RNA polymerase II in a reversible step prior to RNA synthesis. J. Biol. Chem. 263:2962–2968.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Drapkin, R., and D. Reinberg. 1994. The multifunctional TFIIH complex and transcriptional control. Trends Biochem. Sci. 19:504–508.
  • Ellinger, T., D. Behnke, H. Bujard, and J. D. Gralla. 1994. Stalling of E. coli RNA polymerase in the +6 to +12 region in vivo is associated with tight binding to consensus promoter elements. J. Mol. Biol. 239:455–465.
  • Feaver, W. J., O. Gileadi, Y. Li, and R. D. Kornberg. 1991. CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67:1223–1230.
  • Feaver, W. J., J. Q. Svejstrup, N. L. Henry, and R. D. Kornberg. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–1109.
  • Feinberg, M. B., D. Baltimore, and A. D. Frankel. 1991. The role of TAT in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc. Natl. Acad. Sci. USA 88:4045–4049.
  • Goodrich, J. A., and R. Tjian. 1994. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77:145–156.
  • Greenblatt, J., J. R. Nodwell, and S. W. Mason. 1993. Transcriptional antitermination. Nature (London) 364:401–406.
  • Jacob, C. A., S. W. Luse, and D. S. Luse. 1991. Abortive initiation is increased only for the weakest members of a set of down mutants of the adenovirus 2 major late promoter. J. Biol. Chem. 266:22537–22544.
  • Jacob, G. A., J. A. Kitzmiller, and D. S. Luse. 1994. RNA polymerase II promoter strength in vitro may be reduced by defects at initiation or promoter clearance. J. Biol. Chem. 269:3655–3663.
  • Jiang, Y., and J. D. Gralla. 1993. Uncoupling of initiation and reinitiation rates during HeLa RNA polymerase II transcription in vitro. Mol. Cell. Biol. 13:4572–4577.
  • Jiang, Y., and J. D. Gralla. 1994. RNA polymerase II phosphorylation: uncoupling from GAL4-VP16 directed transcription and open complex formation. Nucleic Acids Res. 22:4958–4962.
  • Jiang, Y., and J. D. Gralla. 1995. Nucleotide requirements for activated RNA polymerase II open complex formation in vitro. J. Biol. Chem. 270:1277–1281.
  • Jiang, Y., S. Smale, and J. D. Gralla. 1993. A common ATP requirement for open complex formation and transcription at promoters containing initiator or TATA elements. J. Biol. Chem. 268:6535–6540.
  • Jiang, Y., S. Triezenberg, and J. D. Gralla. 1994. Defective transcriptional activation by diverse VP16 mutants associated with a common inability to form open promoter complexes. J. Biol. Chem. 269:5505–5508.
  • Jiang, Y., M. Yan, and J. D. Gralla. 1995. Abortive initiation and first bond formation at an activated adenovirus E4 promoter. J. Biol. Chem. 270:27332–27338.
  • Kao, S., A. F. Calman, P. A. Luciw, and B. M. Peterlin. 1987. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature (London) 330:489–493.
  • Kim, Y. J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Koleske, A. J. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature (London) 368:466–469.
  • Krumm, A., and M. Groudine. 1995. Tumor suppression and transcription elongation: the dire consequences of changing partners. Science 269:1400–1401.
  • Krumm, A., L. B. Hickey, and M. Groudine. 1995. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev. 9:559–572.
  • Krumm, A., T. Meulia, M. Brunvand, and M. Groudine. 1992. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev. 6:2201–2213.
  • Laspia, M. F., A. P. Rice, and M. B. Mathews. 1989. HIV-1 TAT protein increases transcriptional initiation and stabilizes elongation. Cell 59:283–292.
  • Laybourn, P. J., and M. E. Dahmus. 1989. Transcription-dependent structural changes in the C-terminal domain of mammalian RNA polymerase subunit IIa/o. J. Biol. Chem. 264:6693–6698.
  • Lee, H., K. W. Kraus, M. F. Wolfner, and J. T. Lis. 1992. DNA sequence requirements for generating paused polymerase at the start of HSP-70. Genes Dev. 6:284–295.
  • Li, Y., and R. D. Kornberg. 1994. Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 91:2362–2366.
  • Liao, S. M., J. Zhang, D. A. Jeffrey, A. J. Koleske, C. M. Thompson, D. M. Chao, M. Viljoen, H. J. van Vuuren, and R. A. Young. 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature (London) 374:193–196.
  • Lu, H., O. Flores, R. Weinmann, and D. Reinberg. 1991. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl. Acad. Sci. USA 88:10004–10008.
  • Lu, H., L. Zawel, L. Fisher, J. M. Egly, and D. Reinberg. 1992. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature (London) 358:641–645.
  • McClure, W. R. 1985. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54:171–204.
  • O’Brien, T., S. Hardin, A. Greenleaf, and J. T. Lis. 1994. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature (London) 370:75–77.
  • Parvin, J. D., and P. A. Sharp. 1993. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73:533–540.
  • Payne, J. M., P. J. Laybourn, and M. E. Dahmus. 1989. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit II. J. Biol. Chem. 264:19621–19629.
  • Roeder, R. G. 1991. The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biochem. Sci. 16:402–408.
  • Roy, R., J. P. Adamczewski, T. Seroz, W. Vermeulen, J. P. Tassan, L. Schaef-fer, E. A. Nigg, J. H. Hoeijmakers, and J. M. Egly. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–1101.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sawadogo, M., and R. G. Roeder. 1984. Energy requirement for specific transcription initiation by the human RNA polymerase II system. J. Biol. Chem. 259:5321–5326.
  • Schaeffer, L., R. Roy, S. Humbert, V. Moncollin, W. Vermeulen, J. H. J. Hoeijmakers, P. Chambon, and J.-M. Egly. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63.
  • Serizawa, H., J. Conaway, and R. Conaway. 1993. Phosphorylation of C-terminal domain of Pol II is not required for basal transcription. Nature (London) 363:371–374.
  • Serizawa, H., R. C. Conaway, and J. W. Conaway. 1992. A carboxyl-terminal-domain kinase associated with RNA polymerase II transcription factor delta from rat liver. Proc. Natl. Acad. Sci. USA 89:7476–7480.
  • Serizawa, H., R. C. Conaway, and J. W. Conaway. 1993. Multifunctional RNA polymerase II initiation factor delta from rat liver. Relationship between carboxyl-terminal domain kinase, ATPase, and DNA helicase activities. J. Biol. Chem. 268:17300–17308.
  • Serizawa, H., T. P. Makela, J. W. Conaway, R. C. Conaway, R. A. Weinberg, and R. A. Young. 1995. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature (London) 374:280–282.
  • Shiekhattar, R., F. Mermelstein, R. P. Fisher, R. Drapkin, B. Dynlacht, H. C. Wessling, D. O. Morgan, and D. Reinberg. 1995. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature (London) 374:283–287.
  • Strobl, L. J., and D. Eick. 1992. Hold back of RNA polymerase II at the transcription start site mediates down-regulation of c-myc in vivo. EMBO J. 11:3307–3314.
  • Svejstrup, J. Q., Z. Wang, W. J. Feaver, X. Wu, D. A. Bushnell, T. F. Donahue, E. C. Friedberg, and R. D. Kornberg. 1995. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80:21–28.
  • Tantin, D., and M. Carey. 1994. A heteroduplex template circumvents the energetic requirement for ATP during activated transcription by RNA polymerase II. J. Biol. Chem. 269:17397–17400.
  • Thompson, C. M., A. Koleske, D. M. Chao, and R. A. Young. 1993. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73:1361–1375.
  • Thompson, N. E., D. B. Aronson, and R. R. Burgess. 1990. Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. J. Biol. Chem. 265:7069–7077.
  • Thompson, N. E., T. H. Steinberg, D. B. Aronson, and R. R. Burgess. 1989. Inhibition of in vivo and in vitro transcription by monoclonal antibodies prepared against wheat germ RNA polymerase II that react with the heptapeptide repeat of eukaryotic RNA polymerase II. J. Biol. Chem. 264:11511–11520.
  • Timmers, H. T. 1994. Transcription initiation by RNA polymerase II does not require hydrolysis of beta gamma phosphoanhydride bond of ATP. EMBO J. 13:391–399.
  • Tyree, C. M., C. P. George, L. M. Lira-DeVito, S. L. Wampler, M. E. Dahmus, L. Zawel, and J. T. Kadonaga. 1993. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev. 7:1254–1265.
  • Usheva, A., E. Maldonado, A. Goldring, H. Lu, C. Houbavi, and D. Reinberg. 1992. Specific interaction between the non-phosphorylated form of Pol II and the TATA-binding protein. Cell 69:871–881.
  • Van Dyke, M. W., M. Sawadogo, and R. G. Roeder. 1989. Stability of transcription complexes on class II genes. Mol. Cell. Biol. 9:342–344.
  • Wang, W., M. Carey, and J. D. Gralla. 1992. Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science 255:450–453.
  • Wang, W., J. D. Gralla, and M. Carey. 1992. The acidic activator GAL4-AH can stimulate Pol II transcription by promoting assembly of a closed complex requiring TFIID and TFIIA. Genes Dev. 6:1716–1727.
  • Zawel, L., K. P. Kumar, and D. Reinberg. 1995. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9:1479–1490.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.