3
Views
80
CrossRef citations to date
0
Altmetric
Research Article

Structural Determinants within Pbx1 That Mediate Cooperative DNA Binding with Pentapeptide-Containing Hox Proteins: Proposal for a Model of a Pbx1-Hox-DNA Complex

&
Pages 1632-1640 | Received 01 Nov 1995, Accepted 19 Jan 1996, Published online: 29 Mar 2023

REFERENCES

  • Akam, M. 1989. Hox and Hom: homologous gene clusters in insects and vertebrates. Cell 57:347–349.
  • Ananthan, J., R. Baler, D. Morrissey, J. Zuo, Y. Lan, M. Weir, and R. Voellmy. 1993. Synergistic activation of transcription is mediated by the N-terminal domain of Drosophila fushi tarazu homeoprotein and can occur without DNA binding by the protein. Mol. Cell. Biol. 13:1599–1609.
  • Appel, B., and S. Sakonju. 1993. Cell-type-specific mechanisms of transcriptional repression by the homeotic gene products Ubx and Abd-A in Drosophila embryos. EMBO J. 12:1099–1109.
  • Bürglin, T. R., and G. Ruvkun. 1992. New motif in PBX genes. Nat. Genet. 1:319–320.
  • Catron, K. M., H. L. Zhang, S. C. Marshall, J. A. Inostroza, J. M. Wilson, and C. Abate. 1995. Transcriptional repression by Msx-1 does not require homeodomain DNA-binding sites. Mol. Cell. Biol. 15:861–871.
  • Chan, S.-K., L. Jaffe, M. Capovilla, J. Botas, and R. Mann. 1994. The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78:603–615.
  • Chang, C. P., W. F. Shen, S. Rozenfeld, H. J. Lawrence, C. Largman, and M. L. Cleary. 1995. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev. 9:663–674.
  • Dedera, D. A., E. K. Waller, D. P. Lebrun, A. Sen-Majumdar, M. E. Stevens, G. S. Barsh, and M. L. Cleary. 1993. Chimeric homeobox gene E2A-Pbx1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell 74:833–843.
  • Desplan, C., J. Theis, and P. H. O’Farrell. 1988. The sequence specificity of homeodomain-DNA interaction. Cell 54:1081–1090.
  • Ekker, S., D. von Kessler, and P. A. Beachy. 1992. Differential DNA sequence recognition is a determinant of specificity in homeotic gene action. EMBO J. 11:4059–4072.
  • Fitzpatrick, V. D., A. Percival-Smith, C. J. Ingles, and H. M. Krause. 1992. Homeodomain-independent activity of the fushi tarazu polypeptide in Drosophila embryos. Nature (London) 356:610–612.
  • Fortini, M. E., Z. Lai, and G. M. Rubin. 1991. The Drosophila zfh-1 and zfh-2 genes encode novel proteins containing both zinc-finger and homeodo-main motifs. Mech. Dev. 34:113–122.
  • Gehring, W. J., M. Affolter, and T. Bürglin. 1994. Homeodomain proteins. Annu. Rev. Biochem. 63:487–526.
  • Gehring, W. J., Y. Q. Qian, M. Billeter, K. Furukubo-Tokunaga, A. F. Schier, D. Resendez-perez, M. Affolter, G. Otting, and K. Wüthrich. 1994. Homeodomain-DNA recognition. Cell 78:211–223.
  • Gibson, G., A. Schier, P. LeMotte, and W. J. Gehring. 1990. The specificities of sex combs reduced and antennapedia are defined by a distinct portion of each protein that includes the homeodomain. Cell 62:1087–1103.
  • Goutte, C., and A. D. Johnson. 1994. Recognition of a DNA operator by a dimer composed of two different homeodomain proteins. EMBO J. 13:1434–1442.
  • Grueneberg, D. A., S. Natesan, C. Alexandre, and M. Z. Gilman. 1992. Human and Drsophila homeodomain proteins that enhance the DNA-binding activity of serum response factor. Science 257:1089–1095.
  • Hayashi, S., and M. Scott. 1990. What determines the specificity of action of Drosophila homeodomain proteins? Cell 63:883–894.
  • Hoey, T., and M. Levine. 1988. Divergent homeobox proteins recognize similar DNA sequences in Drosophila. Nature (London) 332:858–861.
  • Hou, J., U. Schindler, W. J. Henzel, T. C. Ho, M. Brasseur, and S. L. McKnight. 1994. An interleukin-4-induced transcription factor: IL-4 Stat. Science 265:1701–1706.
  • Ingraham, H. A., S. E. Flynn, J. W. Voss, V. R. Albert, M. S. Kapiloff, L. Wilson, and M. G. Rosenfeld. 1990. The POU-specific domain of Pit-1 is essential for sequence-specific high affinity DNA-binding and DNA-dependent Pit-1-Pit-1 interaction. Cell 61:1021–1033.
  • Johnson, A. 1992. A combinatorial regulatory circuit in budding yeast, p. 975–1006. In S. L. McKnight and K. R. Yamamoto (ed.), Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Johnson, F. B., E. Parker, and M. A. Krasnow. 1995. Extradenticle protein is a selective cofactor for the Drosophila homeotics: role of the homeodo-main and YPWM amino acid motif in the interaction. Proc. Natl. Acad. Sci. USA 92:739–743.
  • Kamps, M. P., and D. Baltimore. 1993. E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol. Cell. Biol. 13:351–357.
  • Kamps, M. P., T. Look, and D. Baltimore. 1991. The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev. 5:353–368.
  • Kamps, M. P., C. Murre, X. Sun, and D. Baltimore. 1990. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60:547–555.
  • Kamps, M. P., and D. Wright. 1994. Oncoprotein E2A-Pbx1 immortalizes a myeloid progenitor in primary marrow cultures without abrogating its factor-dependence. Oncogene 9:3159–3166.
  • Kissinger, C. R., B. S. Liu, E. Martin-Blabco, T. B. Kornberg, and C. O. Pabo. 1990. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: a framework for understanding homeodomain-DNA interactions. Cell 63:579–590.
  • Knoepfler, P., and M. P. Kamps. 1995. The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1. Mol. Cell. Biol. 15:5811–5819.
  • Krumlauf, R. 1994. Hox genes in vertebrate development. Cell 78:191–201.
  • Kuziora, M. A., and W. McGinnis. 1989. A homeodomain substitution changes the regulatory specificity of the Deformed protein in Drosophila embryos. Cell 59:563–571.
  • Laughon, A. 1991. DNA binding specificity of homeodomains. Biochemistry 30:11357–11367.
  • Leonard, J., B. Peers, T. Johnson, K. Ferreri, S. Lee, and M. Montminy. 1993. Characterization of somatostatin transcription factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic cells. Mol. Endocrinol. 7:1275–1283.
  • Lu, Q., P. Knoepfler, J. Scheele, D. D. Wright, and M. P. Kamps. 1995. Both Pbx1 and E2A-Pbx1 bind the DNA motif, ATCAATCAA, cooperatively with the products of multiple murine HOX genes, some of which are themselves oncogenes. Mol. Cell. Biol. 15:3786–3795.
  • Lu, Q., D. D. Wright, and M. P. Kamps. 1994. Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol. Cell. Biol. 14:3938–3948.
  • Malicki, J., K. Schughart, and W. McGinnis. 1990. Mouse Hox-2.2 specifies thoracic segmental identity in Drosophila embryos and larvae. Cell 63:961–967.
  • Mann, R. S., and D. S. Hogness. 1990. Functional dissection of ultrabithorax proteins in D. melanogaster. Cell 60:597–610.
  • McGinnis, W., and R. Krumlauf. 1992. Homeobox genes and axial patterning. Cell 68:283–302.
  • McGinnis, N., M. Kuziora, and W. McGinnis. 1990. Human Hox-4.2 and Drosophila deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell 63:969–976.
  • Monica, K., N. Galili, J. Nourse, D. Saltman, and M. L. Cleary. 1991. PBX2 and PBX3, new homeobox genes with extensive homology to the human proto-oncogene PBX1. Mol. Cell. Biol. 11:6149–6157.
  • Nourse, J., J. D. Mellentin, N. Galili, J. Wilkinson, E. Stanbridge, S. D. Smith, and M. L. Cleary. 1990. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60:535–545.
  • Peers, B., S. Sharma, T. Johnson, M. Kamps, and M. Montminy. 1995. The pancreatic islet factor STF-1 binds cooperatively with Pbx to a regulatory element in the somatostatin promoter: importance of the FPWMK motif and of the homeodomain. Mol. Cell. Biol. 15:7091–7097.
  • Peifer, M., and E. Wieschaus. 1990. Mutations in the Drosophila gene extradenticle affect the way specific homeodomain proteins regulate segmental identity. Genes Dev. 4:1209–1223.
  • Pellerin, I., C. Schnabel, K. Catron, and C. Abate. 1994. Hox proteins have different affinities for a consensus DNA site that correlate with the positions of their genes on the hox cluster. Mol. Cell. Biol. 14:4532–4545.
  • Pöpperl, H., M. Bienz, M. Studer, S. K. Chan, S. Aparicio, S. Brenner, R. S. Mann, and R. Krumlauf. 1995. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81:1031–1042.
  • Qian, Y. Q., M. Billeter, G. Otting, M. Muller, W. J. Gehring, and K. Wuthrich. 1989. The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solutution: comparison with prokaryotic repressors. Cell 59:573–580.
  • Rauskolb, C., M. Peifer, and E. Wieschaus. 1993. Extradenticle, a regulator of homeotic gene activity, is a homologue of the homeobox-containing human proto-oncogene Pbx1. Cell 74:1101–1112.
  • Rauskolb, C., and E. Wieschaus. 1994. Coordinate regulation of downstream genes by extradenticle and the homeotic selector proteins. EMBO J. 13:3561–3569.
  • Saffman, E. E., and M. A. Krasnow. 1994. A differential response element for the homeotics at the Antennapedia P1 promoter of Drosophila. Proc. Natl. Acad. Sci. USA 91:7420–7424.
  • Scott, M. P., J. W. Tamkun, and G. W. Hartzel III. 1989. The structure and function of the homeodomain. Biochim. Biophys. Acta 989:25–48.
  • Stark, M. R., and A. D. Johnson. 1994. Interaction between two homeodomain proteins is specificed by a short C-terminal tail. Nature (London) 371:429–432.
  • Stern, S., M. Tanaka, and W. Herr. 1989. The Oct-1 homeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature (London) 341:624–630.
  • Treacy, M. N., L. I. Neilson, E. E. Turner, X. He, and M. G. Rosenfeld. 1992. Twin of I-POU: a two amino acid difference in the I-POU homeodomain distinguishes an activator from an inhibitor of transcription. Cell 68:491–505.
  • Treisman, J., E. Harris, and C. Desplan. 1991. The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev. 5:594–604.
  • Van Dijk, M. A., and C. Murre. 1994. Extradenticle raises the DNA-binding specificity of homeotic selector gene products. Cell 78:617–624.
  • Vershon, A. K., and A. D. Johnson. 1993. A short, disordered protein region mediates interactions between the homeodomain of the yeast alpha 2 protein and the MCM1 protein. Cell 72:105–112.
  • Voss, J. W., L. Wilson, and M. G. Rosenfeld. 1991. POU-domain proteins Pit-1 and Oct-1 interact to form a heteromeric complex and can cooperate to induce expression of the prolactin promoter. Genes Dev. 5:1309–1320.
  • Wieschaus, E., C. Nüsslein-Volhard, and G. Jurgens. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. III. Zygotic loci on the X chromosome and the fourth chromosome. Roux’s Arch. Dev. Biol. 193:267–282.
  • Wilson, D., B. Guenther, C. Desplan, and J. Kuriyan. High resolution crystal structure of a Paired (Pax) class cooperative homeodomain dimer on DNA, in press.
  • Wilson, D., G. J. Sheng, T. Lecuit, N. Dostatni, and C. Desplan. 1993. Cooperative dimerization of Paired class homeodomains on DNA. Genes Dev. 7:2120–2134.
  • Wolberger, C., A. K. Vershon, B. S. Liu, A. D. Johnson, and C. O. Pabo. 1991. Crystal structure of a MATa2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67:517–528.
  • Xue, D., Y. Tu, and M. Chalfie. 1993. Cooperative interactions between the Caenorhabditis elegans homeoproteins UNC-86 and MEC-3. Science 261:1324–1328.
  • Zappavigna, V., D. Sartori, and F. Mavilio. 1994. Specificity of HOX protein function depends on DNA-protein and protein-protein interactions, both mediated by the homeo domain. Genes Dev. 8:732–744.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.