2
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Transcriptional Corepression In Vitro: a Mot1p-Associated Form of TATA-Binding Protein Is Required for Repression by Leu3p

&
Pages 1641-1648 | Received 19 Sep 1995, Accepted 25 Jan 1996, Published online: 29 Mar 2023

REFERENCES

  • Andreadis, A., Y.-P. Hsu, G. B. Kohlhaw, and P. Schimmel. 1982. Nucleotide sequence of yeast LEU2 shows 5′-noncoding region has sequences cognate to leucine. Cell 31:319–325.
  • Auble, D., and S. Hahn. 1993. An ATP-dependent inhibitor of TBP binding to DNA. Genes Dev. 7:844–856.
  • Auble, D. T., K. E. Hansen, C. G. F. Mueller, W. S. Lane, J. Thorner, and S. Hahn. 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding by an ATP-dependent mechanism. Genes Dev. 8:1920–1934.
  • Austin, R. J., and M. D. Biggin. 1995. A domain of even-skipped protein represses transcription by preventing TFIID binding to a promoter: repression by cooperative blocking. Mol. Cell. Biol. 15:4683–4693.
  • Brisco, P. R. G., and G. B. Kohlhaw. 1990. Regulation of yeast LEU2. J. Biol. Chem. 265:11667–11675.
  • Chen, J.-L., L. D. Attardi, C. P. Verrijzer, K. Yokomori, and R. Tjian. 1994. Assembly of recombinant TFIID reveals differential coactivator requirments for distinct transcriptional activators. Cell 79:93–105.
  • Chiang, C., H. Ge, Z. Wang, A. Hoffmann, and R. Roeder. 1993. Unique TATA-binding protein-containing complexes and cofactors involved in transcription by RNA polymerases II and III. EMBO J. 12:2749–2762.
  • Cortes, P., O. Flores, and D. Reinberg. 1992. Factors involved in specific transcription by mammalian RNA polymerase II: purification and analysis of transcription factor IIA and identification of transcription factor IIJ. Mol. Cell. Biol. 12:413–421.
  • Davis, J. L., R. Kunisawa, and J. Thorner. 1992. A presumptive helicase (MOT1 gene product) affects gene expression and is required for viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1879–1892.
  • Dynlacht, B. D., T. Hoey, and R. Tjian. 1991. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66:563–576.
  • Field, J., J.-I. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I. A. Wilson, R. A. Lerner, and M. Wigler. 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8:2159–2165.
  • Friden, P., and P. Schimmel. 1988. LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence. Mol. Cell. Biol. 8:2690–2697.
  • Ge, H., and R. Roeder. 1994. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J. Biol. Chem. 269:17136–17140.
  • Gietz, D., A. St. Jean, R. A. Woods, and R. H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hisatake, K., S. Hasegawa, R. Takada, Y. Nakatani, M. Horikoshi, and R. G. Roeder. 1993. The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1. Nature (London) 362:179–181.
  • Hu, Y., T. G. Cooper, and G. B. Kohlhaw. 1995. The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol. Cell. Biol. 15:52–57.
  • Jacq, X., C. S. Brou, Y. Lutz, I. Davidson, P. Chambon, and L. Tora. 1994. Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79:107–117.
  • Kim, Y.-J., S. Bjorkland, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Kokubo, T., D. Gong, R. Roeder, M. Horikoshi, and Y. Nakatani. 1993. The Drosophila 110-kDa transcription factor TFIID subunit directly interacts with the N-terminal region of the 230-kDa subunit. Proc. Natl. Acad. Sci. USA 90:5896–5900.
  • Kokubo, T., D. Gong, S. Yamashita, M. Horikoshi, R. Roeder, and Y. Nakatani. 1993. Drosophila 230-kD TFIID subunit, a functional homolog of the human cell cycle gene product, negatively regulates DNA binding of the TATA box-binding subunit of TFIID. Genes Dev. 7:1033–1046.
  • Koleske, A., and R. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature (London) 368:466–469.
  • Komachi, K., M. J. Redd, and A. D. Johnson. 1994. The WD repeats of Tup1 interact with the homeo domain protein a2. Genes Dev. 8:2857–2867.
  • Kuchin, S., P. Yeghian, and M. Carlson. 1995. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc. Natl. Acad. Sci. USA 92:4006–4010.
  • Paranjape, S. M., R. T. Kamakaka, and J. T. Kadonaga. 1994. Role of chromatin in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–298.
  • Parthun, M. R., D. A. Mangus, and J. A. Jaehning. 1992. The EGD1 product, a yeast homolog of human BTF3, may be involved in GAL4 DNA binding. Mol. Cell. Biol. 12:5683–5689.
  • Poon, D., A. M. Campbell, Y. Bai, and P. A. Weil. 1994. Yeast Taf170 is encoded by MOT1 and exists in a TATA box-binding protein (TBP)-TBP-associated factor complex distinct from transcription factor IID. J. Biol. Chem. 269:23135–23140.
  • Poon, D., and P. Weil. 1993. Immunopurification of yeast TATA-binding protein and associated factors. J. Biol. Chem. 268:15325–15328.
  • Pugh, B. F., and R. Tjian. 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 5:1935–1945.
  • Reddy, P., and S. Hahn. 1991. Dominant negative mutations in yeast TFIID define a bipartite DNA-binding region. Cell 65:349–357.
  • Reese, J. C., L. Apone, S. S. Walker, L. A. Griffen, and M. R. Green. 1994. Yeast TAFIIs in a multisubunit complex required for activated transcription. Nature (London) 371:523–527.
  • Remboutsika, E., and G. Kohlhaw. 1994. Molecular architecture of a Leu3p-DNA complex in solution: a biochemical approach. Mol. Cell. Biol. 14:5547–5557.
  • Ronne, H. 1995. Glucose repression in fungi. Trends Genet. 11:12–17.
  • Ruppert, S., E. H. Wang, and R. Tjian. 1993. Cloning and expression of human TAFII250: a TBP-associated factor implicated in cell-cycle regulation. Nature (London) 362:175–179.
  • Sauer, F., J. D. Fondell, Y. Ohkuma, R. G. Roeder, and H. Jäckle. 1995. Control of transcription by Krüppel through interactions with TFIIB and TFIIEβ. Nature (London) 375:162–164.
  • Sayre, M. H., H. Tschochner, and R. D. Kornberg. 1992. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J. Biol. Chem. 267:23376–23382.
  • Sikorski, R. S., M. S. Boguski, M. Goebl, and P. Hieter. 1990. A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307–317.
  • Sze, J.-Y., and G. B. Kohlhaw. 1993. Purification and structural characterization of transcriptional regulator Leu3 of yeast. J. Biol. Chem. 268:2505–2512.
  • Sze, J.-Y., E. Remboutsika, and G. B. Kohlhaw. 1993. Transcriptional regulator Leu3 of Saccharomyces cerevisiae: separation of activator and repressor functions. Mol. Cell. Biol. 13:5702–5709.
  • Sze, J.-Y., M. Woontner, J. A. Jaehning, and G. B. Kohlhaw. 1992. In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on α-isopropylmalate. Science 258:1143–1145.
  • Tjian, R., and T. Maniatis. 1994. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77:6–8.
  • Tsai, M.-J., and B. W. O’Malley. 1994. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63:451–486.
  • Tzamarias, D., and K. Struhl. 1995. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev. 9:821–831.
  • Um, M., C. Li, and J. L. Manley. 1995. The transcriptional repressor Even-skipped interacts directly with the TATA-binding protein. Mol. Cell. Biol. 15:5007–5016.
  • Verrijzer, C., K. Yokomori, J. Chen, and R. Tjian. 1994. Drosophila TAFII150: similarity to yeast gene TSM-1 and specific binding to core promoter DNA. Science 264:933–941.
  • Wade, P. A., and J. A. Jaehning. 1994. Isolation of yeast transcription factor IIA using a functional transcription assay. Protein Expr. Purif. 5:577–582.
  • Wade, P. A., S. D. Shaffer, and J. A. Jaehning. 1993. Resolution of transcription factors from a transcriptionally active whole-cell extract from yeast: purification of TFIIB, TBP and RNA polymerase IIa. Protein Expr. Purif. 4:290–297.
  • Wahi, M., and A. D. Johnson. 1995. Identification of genes required for a2 repression in Saccharomyces cerevisiae. Genetics 140:70–90.
  • Weintraub, S. J., K. N. B. Chow, R. X. Luo, S. H. Zhang, S. He, and D. C. Dean. 1995. Mechanisms of active transcriptional repression by the retinoblastoma protein. Nature (London) 375:812–815.
  • Weinzierl, R. O., B. D. Dynlacht, and R. Tjian. 1993. Largest subunit of Drosophila transcription factor IID directs assembly of a complex containing TBP and a coactivator. Nature (London) 362:511–517.
  • Winkley, C. S., M. J. Keller, and J. A. Jaehning. 1985. A multicomponent mitochondrial RNA polymerase from Saccharomyces cerevisiae. J. Biol. Chem. 260:14214–14223.
  • Woontner, M., and J. A. Jaehning. Unpublished data.
  • Woontner, M., P. A. Wade, J. Bonner, and J. A. Jaehning. 1991. Transcriptional activation in an improved whole-cell extract from Saccharomyces cerevisiae. Mol. Cell. Biol. 11:4555–4560.
  • Zhou, Q., P. M. Lieberman, T. G. Boyer, and A. J. Berk. 1992. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev. 6:1964–1974.
  • Zitomer, R. S., and C. V. Lowry. 1992. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol. Rev. 56:1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.