58
Views
517
CrossRef citations to date
0
Altmetric
Research Article

Wortmannin Inactivates Phosphoinositide 3-Kinase by Covalent Modification of Lys-802, a Residue Involved in the Phosphate Transfer Reaction

, , , , , & show all
Pages 1722-1733 | Received 13 Nov 1995, Accepted 21 Dec 1995, Published online: 29 Mar 2023

REFERENCES

  • Arcaro, A., and M. P. Wymann. 1993. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296:297–301.
  • Backer, J. M., M. G. Myers, Jr., S. E. Shoelson, D. J. Chin, X. J. Sun, M. Miralpeix, P. Hu, B. Margolis, E. Y. Skolnik, and J. Schlessinger. 1992. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11:3469–3479.
  • Baggiolini, M., B. Dewald, J. Schnyder, W. Ruch, P. H. Cooper, and T. G. Payne. 1987. Inhibition of the phagocytosis-induced respiratory burst by the fungal metabolite wortmannin and some analogues. Exp. Cell Res. 169:408–418.
  • Barton, G. J., and M. J. Sternberg. 1987. A strategy for the rapid multiple alignment of protein sequences: confidence levels from tertiary structure comparisons. J. Mol. Biol. 198:327–337.
  • Bonser, R. W., N. T. Thompson, R. W. Randall, J. E. Tateson, G. D. Spacey, H. F. Hodson, and L. G. Garland. 1991. Demethoxyviridin and wortmannin block phospholipase C and D activation in the human neutrophil. Br. J. Pharmacol. 103:1237–1241.
  • Brown, E. J., M. W. Albers, T. B. Shin, K. Ichikawa, C. T. Keith, W. S. Lane, and S. L. Schreiber. 1994. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature (London) 369:756–758.
  • Brown, W. J., D. B. DeWald, S. D. Emr, H. Plutner, and W. E. Balch. 1995. Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells. J. Cell Biol. 130:781–796.
  • Burgering, B. M. T., and P. J. Coffer. 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature (London) 376:599–603.
  • Chuang, T.-H., B. P. Bohl, and G. M. Bokoch. 1993. Biologically active lipids are regulators of Rac-GDI complexation. J. Biol. Chem. 268:26206–26211.
  • Chung, J., T. C. Grammer, K. P. Lemon, A. Kazlauskas, and J. Blenis. 1994. PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidyl-inositol-3-OH kinase. Nature (London) 370:71–75.
  • Claesson-Welsh, L. 1994. Platelet-derived growth factor receptor signals. J. Biol. Chem. 269:32023–32026.
  • Cross, D. A., D. R. Alessi, J. R. Vandenheede, H. E. McDowell, H. S. Hundal, and P. Cohen. 1994. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J. 303:21–26.
  • Davidson, H. W. 1995. Wortmannin causes mistargeting of procathepsin D. Evidence for the involvement of phosphatidylinositol 3-kinase in vesicular transport to lysosomes. J. Cell Biol. 130:797–805.
  • Dhand, R., K. Hara, I. Hiles, B. Bax, I. Gout, G. Panayotou, M. J. Fry, K. Yonezawa, M. Kasuga, and M. D. Waterfield. 1994. PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J. 13:511–521.
  • Dhand, R., I. Hiles, G. Panayotou, S. Roche, M. J. Fry, I. Gout, N. F. Totty, O. Truong, P. Vicendo, K. Yonezawa, M. Kasuga, S. A. Courtneidge, and M. D. Waterfield. 1994. PI 3-kinase is a dual specific enzyme: autoregulation by an intrinsic protein serine-kinase activity. EMBO J. 13:522–533.
  • End, P., I. Gout, M. J. Fry, G. Panayotou, R. Dhand, K. Yonezawa, M. Kasuga, and M. Waterfield. 1993. A biosensor approach to probe the structure and function of the p85a subunit of the phosphatidylinositiol 3-kinase complex. J. Biol. Chem. 268:10066–10075.
  • Escobedo, J. A., S. Navankasattusas, W. M. Kavanaugh, D. Milfay, V. A. Fried, and L. T. Williams. 1991. cDNA cloning of a novel 85 kD protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor. Cell 65:75–82.
  • Franke, T. F., S.-I. Yang, T. O. Chan, K. Datta, A. Kazlauskas, D. K. Morrison, D. R. Kaplan, and P. N. Tsichlis. 1995. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736.
  • Fry, M. J., G. Panayotou, R. Dhand, F. Ruiz Larrea, I. Gout, O. Nguyen, S. A. Courtneidge, and M. D. Waterfield. 1992. Purification and characterization of a phosphatidylinositol 3-kinase complex from bovine brain by using phosphopeptide affinity columns. Biochem. J. 288:383–393.
  • Gelas, P., V. von Tscharner, M. Record, M. Baggiolini, and H. Chap. 1992. Human neutrophil phospholipase D activation by N-formylmethionyl-leucylphenylalanine reveals a two-step process for the control of phosphatidylcholine breakdown and oxidative burst. Biochem. J. 287:67–72.
  • Haefliger, W., and D. Hauser. 1975. Einfuhrung der Corticoid-Seitenkette bei Wortmannin. Helv. Chim. Acta 58:1629–1633.
  • Hartley, K. O., D. Gell, G. C. M. Smith, H. Zhang, N. Divecha, M. A. Connelly, A. Admon, S. P. Lees-Miller, C. W. Anderson, and S. P. Jackson. 1995. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82:849–856.
  • Hawkins, P. T., A. Eguinoa, R.-G. Qiu, D. Stokoe, F. T. Cooke, R. Walters, S. Wennstrom, L. Claesson-Welsh, T. Evans, M. Symons, and L. R. Stephens. 1995. PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr. Biol. 5:393–403.
  • Hawkins, P. T., T. R. Jackson, and L. R. Stephens. 1992. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature (London) 358:157–159.
  • Herman, P. K., and S. D. Emr. 1990. Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:6742–6754.
  • Hiles, I. D., M. Otsu, S. Volinia, M. J. Fry, I. Gout, R. Dhand, G. Panayotou, F. Ruiz Larrea, A. Thompson, and N. F. Totty. 1992. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70:419–429.
  • Hu, P., A. Mondino, E. Y. Skolnik, and J. Schlessinger. 1993. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol. Cell. Biol. 13:7677–7688.
  • Janmey, P. A., K. Iida, H. L. Yin, and T. P. Stossel. 1987. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J. Biol. Chem. 262:12228–12236.
  • Kanai, F., K. Ito, M. Todaka, H. Hayashi, S. Kamohara, K. Ishii, T. Okada, O. Hazeki, M. Ui, and Y. Ebina. 1993. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem. Biophys. Res. Commun. 195:762–768.
  • Kaplan, D. R., M. Whitman, B. Schaffhausen, D. C. Pallas, M. White, L. C. Cantley, and T. M. Roberts. 1987. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50:1021–1029.
  • Kaufmann, R. J., P. Murtha, D. E. Ingolia, C.-Y. Yeung, and R. E. Kellems. 1989. The phosphorylation state of eucaryotic initiation factor 2 alters translational efficiency of specific mRNAs. Mol. Cell. Biol. 9:946–958.
  • Kazlauskas, A., and J. A. Cooper. 1990. Phosphorylation of the PDGF receptor β subunit creates a tight binding site for phosphatidylinositol 3 kinase. EMBO J. 9:3279–3286.
  • Kimura, K., S. Hattori, Y. Kabuyama, Y. Shizawa, J. Takayanagi, S. Naka-mura, S. Toki, Y. Matsuda, K. Onodera, and Y. Fukui. 1994. Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J. Biol. Chem. 269:18961–18967.
  • Komatsu, H., and M. Ikebe. 1993. Affinity labelling of smooth-muscle myosin light-chain kinase with 5′-(p-(fluorosulphonyl)benzoyl)adenosine. Biochem. J. 296:53–58.
  • Kovacsovics, T. J., C. Bachelot, A. Toker, C. J. Vlahos, B. Duckworth, L. C. Cantley, and J. H. Hartwig. 1995. Phosphoinositide 3-kinase inhibition spares actin assembly in activating platelets but reverses platelet aggregation. J. Biol. Chem. 270:11358–11366.
  • Kundra, V., J. A. Escobedo, A. Kaslauskas, H. K. Kim, S. G. Rhee, L. T. Williams, and B. R. Zetter. 1994. Regulation of chemotaxis by the platelet-derived growth factor receptor-β. Nature (London) 367:474–476.
  • Kunz, J., R. Henriquez, U. Schneider, M. Deuter Reinhard, N. R. Movva, and M. N. Hall. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73:585–596.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Madhusudan, E., A. Trafny, N. H. Xuong, J. A. Adams, L. F. Ten Eyck, S. S. Taylor, and J. M. Sowadski. 1994. cAMP-dependent protein kinase: crystal-lographic insights into substrate recognition and phosphotransfer. Protein Sci. 3:176–187.
  • Nakanishi, H., K. A. Brewer, and J. H. Exton. 1993. Activation of the ζ isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 268:13–16.
  • Nakanishi, S., K. J. Catt, and T. Balla. 1995. A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositol-phospholipids. Proc. Natl. Acad. Sci. USA 92:5317–5321.
  • Nakanishi, S., S. Kakita, I. Takahashi, K. Kawahara, E. Tsukuda, T. Sano, K. Yamada, M. Yoshida, H. Kase, Y. Matsuda, Y. Hashimoto, and Y. Nonomura. 1992. Wortmannin, a microbial product inhibitor of myosin light chain kinase. J. Biol. Chem. 267:2157–2163.
  • Okada, T., Y. Kawano, T. Sakakibara, O. Hazeki, and M. Ui. 1994. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes—studies with a selective inhibitor wortmannin. J. Biol. Chem. 269:3568–3573.
  • Okada, T., L. Sakuma, Y. Fukui, O. Hazeki, and M. Ui. 1994. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem. 269:3563–3567.
  • O’Reilly, D. R., L. K. Miller, and V. A. Luckow. 1992. Bacculovirus expression vectors—a laboratory manual. W. H. Freeman & Co., New York.
  • Otsu, M., I. D. Hiles, I. Gout, M. J. Fry, F. Ruiz-Larrea, G. Panayotou, A. Thompson, R. Dhand, J. Hsuan, N. Totty, A. D. Smith, S. J. Morgan, S. A. Courtneidge, P. J. Parker, and M. D. Waterfield. 1991. Characterisation of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65:91–104.
  • Page, M. J. 1989. p36C: an improved bacculovirus expression vector for producing high levels of mature recombinant proteins. Nucleic Acids Res. 17:454.
  • Panayotou, G., B. Bax, I. Gout, M. Federwisch, B. Wroblowski, R. Dhand, M. J. Fry, T. L. Blundell, A. Wollmer, and M. D. Waterfield. 1992. Interaction of the p85-subunit of PI 3-kinase and its N-terminal SH2-domain with a PDGF receptor phosphorylation site—structural features and analysis of conformational changes. EMBO J. 11:4261–4272.
  • Reinhold, S. L., S. M. Prescott, G. A. Zimmerman, and T. M. McIntyre. 1990. Activation of human neutrophil phospholipase D by three separable mechanisms. FASEB J. 4:208–214.
  • Rusconi, S., Y. Severne, O. Georgiev, I. Galli, and S. A. Wieland. 1990. A novel expression assay to study transcriptional activators. Gene 89:211–221.
  • Sabatini, D. M., H. Erdjument-Bromage, M. Lui, P. Tempst, and S. H. Snyder. 1994. RAFT: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35–43.
  • Sabers, C. J., M. M. Martin, G. J. Brunn, J. M. Williams, F. J. Dumont, G. Wiederrecht, and R. T. Abraham. 1995. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J. Biol. Chem. 270:815–822.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Saraste, M., P. R. Sibbald, and A. Wittinghofer. 1990. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15:430–434.
  • Schägger, H., and G. Von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range of 1 to 100 kDa. Anal. Biochem. 166:368–379.
  • Scholz, G., G. J. Barritt, and F. Kwok. 1992. Affinity labelling of the active site of brain phosphatidylinositol 4-kinase with 5′-fluorosulphonylbenzoyl-adenosine. Eur. J. Biochem. 210:461–466.
  • Schu, P. V., K. Takegawa, M. J. Fry, J. H. Stack, M. D. Waterfield, and S. D. Emr. 1993. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91.
  • Serunian, L. A., M. T. Haber, T. Fukui, J. W. Kim, S. G. Rhee, J. M. Lowenstein, and L. C. Cantley. 1989. Polyphosphoinositides produced by phosphatidylinositol 3-kinase are poor substrates for phospholipases C from rat liver and bovine brain. J. Biol. Chem. 269:31552–31562.
  • Shibasaki, F., Y. Fukui, and T. Takenawa. 1993. Different properties of monomer and heterodimer forms of phosphatidylinositol 3-kinases. Biochem. J. 289:227–231.
  • Skolnik, E. Y., B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger. 1991. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90.
  • Stack, J. H., D. B. DeWald, K. Takegawa, and S. D. Emr. 1995. Vesicle-mediated protein transport: regulation of interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J. Cell Biol. 129:321–334.
  • Stephens, L., A. Smrcka, F. T. Cooke, T. R. Jackson, P. C. Sternweis, and P. T. Hawkins. 1994. A novel phosphoinositide 3-kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell 77:83–93.
  • Stephens, L. R., K. T. Hughes, and R. F. Irvine. 1991. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature (London) 351:33–39.
  • Sternberg, M. J., and M. J. Zvelebil. 1990. Prediction of protein structure from sequences. Eur. J. Cancer 26:1163–1166.
  • Stoyanov, B., S. Volinia, T. Hanck, I. Rubio, M. Loubtchenkov, D. Malek, S. Stoyanova, B. Vanhaesebroeck, R. Dhand, B. Nurnberg, P. Gierschik, K. Seedorf, J. J. Hsuan, M. D. Waterfield, and R. Wetzker. 1995. Cloning and characterization of a G protein-activated human phosphatidylinositide-3 kinase. Science 269:690–693.
  • Summers, N. L., and M. Karplus. 1989. Construction of side chains in homology modelling. Application to the C-terminal lobe of rhizopuspepsin. J. Mol. Biol. 210:785–811.
  • Taylor, S. S., D. R. Knighton, J. Zheng, L. F. Ten Eyck, and J. M. Sowadski. 1992. Structural framework for the protein kinase family. Annu. Rev. Cell Biol. 8:429–462.
  • Thelen, M., M. P. Wymann, and H. Langen. 1994. Wortmannin binds specifically to phosphatidylinositol 3-kinase while inhibiting G protein coupled receptor signalling in neutrophil leukocytes. Proc. Natl. Acad. Sci. USA 91:4960–4964.
  • Toker, A., M. Meyer, K. K. Reddy, J. R. Falck, R. Aneja, S. Aneja, A. Parra, D. J. Burns, L. M. Ballas, and L. C. Cantley. 1994. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J. Biol. Chem. 269:32358–32367.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Traynor-Kaplan, A. E., A. L. Harris, B. Thompson, P. Taylor, and L. A. Sklar. 1988. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature (London) 334:353–356.
  • Ui, M., T. Okada, K. Hazeki, and O. Hazeki. 1995. Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem. Sci. 20:303–307.
  • Vlahos, C. J., W. F. Matter, K. Y. Hui, and R. F. Brown. 1994. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269:5241–5248.
  • Volina, S., R. Dhand, B. Vanhaesebroeck, L. K. MacDougall, R. Stein, M. J. Zvelebil, J. Domin, C. Panaretou, and M. D. Waterfield. 1995. A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system. EMBO J. 14:3339–3348.
  • Volina, S., I. D. Hiles, E. Ormondroyd, D. Nizetic, R. Antonacci, M. Rocchi, and M. D. Waterfield. 1994. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110α (PIK3CA) gene. Genomics 24:472–477.
  • Welsh, G. I., E. J. Foulstone, S. W. Young, J. M. Tavare, and C. G. Proud. 1994. Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase kinase-3 and mitogen-activated protein kinase. Biochem. J. 303:15–20.
  • Wennstrom, S., P. T. Hawkins, F. Cooke, K. Hara, K. Yonezawa, M. Kasuga, T. Jackson, L. Claesson-Welsh, and L. Stephens. 1994. Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr. Biol. 4:385–393.
  • Wennstrom, S., A. Siegbahn, K. Yokote, A.-K. Arvidsson, C.-H. Heldin, S. Mori, and L. Claesson-Welsh. 1994. Membrane ruffling and chemotaxis transduced by the PDGF β-receptor require the binding site for phosphatidylinositol 3′ kinase. Oncogene 9:651–660.
  • Wessel, D., and U. I. Flugge. 1984. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138:141–143.
  • White, M. F., and C. R. Kahn. 1994. The insulin signaling system. J. Biol. Chem. 269:1–4.
  • Woscholski, R., T. Kodaki, M. McKinnon, M. D. Waterfield, and P. J. Parker. 1994. A comparison of demethoxyviridin and wortmannin as inhibitors of phosphatidylinositol 3-kinase. FEBS Lett. 342:109–114.
  • Wymann, M. P., and A. Arcaro. 1994. PDGF-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts. Biochem. J. 298:517–520.
  • Yano, H., S. Nakanishi, K. Kimura, N. Hanai, Y. Saitoh, Y. Fukui, Y. Nonomura, and Y. Matsuda. 1993. Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J. Biol. Chem. 268:25846–25856.
  • Yao, R., and G. M. Cooper. 1995. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267:2003–2006.
  • Yeh, J. I., E. A. Gulve, L. Rameh, and M. J. Birnbaum. 1995. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J. Biol. Chem. 270:2107–2111.
  • Yu, F.-X., H.-Q. Sun, P. A. Janmey, and H. L. Yin. 1992. Identification of a phosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J. Biol. Chem. 267:14616–14621.
  • Zakian, V. A. 1995. ATM-related genes: what do they tell us about functions of the human Gene? Cell 82:685–687.
  • Zoller, M. J., N. C. Nelson, and S. S. Taylor. 1989. Affinity labeling of cAMP-dependent protein kinase with p-fluorosulfonylbenzoyl adenosine. J. Biol. Chem. 256:10837–10842.
  • Zvelebil, M. J., G. J. Barton, W. R. Taylor, and M. J. Sternberg. 1987. Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J. Mol. Biol. 195:957–961.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.