6
Views
42
CrossRef citations to date
0
Altmetric
Research Article

Interactions among SR Proteins, an Exonic Splicing Enhancer, and a Lentivirus Rev Protein Regulate Alternative Splicing

&
Pages 2325-2331 | Received 18 Oct 1995, Accepted 20 Feb 1996, Published online: 29 Mar 2023

REFERENCES

  • Amendt, B., D. Hesslein, L. J. Chang, and C. M. Stoltzfus. 1994. Presence of negative and positive cis-acting RNA splicing elements within and flanking the first tat coding exon of human immunodeficiency virus type 1. Mol. Cell. Biol. 14:3960–3970.
  • Amendt, B. A., Z.-H. Si, and C. M. Stoltzfus. 1995. Presence of exon splicing silencers within human immunodeficiency virus type 1 tat exon 2 and tat/rev exon 3: evidence for inhibition mediated by cellular factors. Mol. Cell. Biol. 15:4606–4615.
  • Bray, M., S. Prasad, J. W. Dubay, E. Hunter, K.-T. Jeang, D. Rekosh, and M.-L. Hammarskjold. 1994. A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc. Natl. Acad. Sci. USA 91:1256–1260.
  • Caceres, J. F., S. Stamm, D. M. Helfman, and A. R. Krainer. 1994. Regulation of alternative splicing by overexpression of antagonistic splicing factors. Science 265:1706–1709.
  • Caputi, M., G. Casari, S. Guenz, R. Tagliabue, A. Sidoli, C. A. Melo, and F. E. Baralle. 1994. A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res. 22:1018–1022.
  • Chang, D. D., and P. A. Sharp. 1989. Regulation by HIV rev depends upon recognition of splice sites. Cell 59:789–795.
  • Cullen, B. R. 1992. Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol. Rev. 56:375–394.
  • Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Eperon, I. C., D. C. Ireland, R. A. Smith, A. Mayeda, and A. R. Krainer. 1993. Pathways for selection of 5′ splice sites by U1 snRNPs and SF2/ASF. 1993. EMBO J. 12:3607–3617.
  • Fu, X.-D. 1995. The superfamily of arginine-serine-rich splicing factors. RNA 1:663–680.
  • Fu, X.-D., R. A. Katz, A. M. Skalka, and T. Maniatis. 1991. The role of branchpoint and 3′ exon sequences in the control of balanced splicing of avian retrovirus RNA. Genes Dev. 5:211–220.
  • Fu, X.-D., and T. Maniatis. 1992. The 35 kDa mammalian splicing factor SC35 mediates specific interactions between U1 and U2 small nuclear ribo-nucleoprotein particles at the 3′ splice site. Proc. Natl. Acad. Sci. USA 89:1725–1729.
  • Fu, X.-D., T. Maniatis, and A. R. Krainer. 1992. General splicing factors SF2 and SC35 have equivalent activities in vitro, and both affect alternative 5′ and 3′ splice site selection. Proc. Natl. Acad. Sci. USA 89:11224–11228.
  • Ge, H., and J. L. Manley. 1990. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62:25–34.
  • Gontarek, R. R., M. T. McNally, and K. Beemon. 1993. Mutation of an RSV intronic element abolishes both U11/U12 snRNP binding and negative regulation of splicing. Genes Dev. 7:1926–1936.
  • Gontarek, R. R., and D. Derse. Unpublished data.
  • Harris, M. et al. Unpublished data.
  • Horowitz, D. S., and A. R. Krainer. 1994. Mechanisms for selecting 5′ splice sites in mammalian pre-mRNA splicing. Trends Genet. 10:100–106.
  • Humphrey, M. B., J. Bryan, T. A. Cooper, and S. M. Berget. 1995. A 32-nucleotide exon splicing enhancer regulates usage of competing 5′ splice sites in a differential internal exon. Mol. Cell. Biol. 15:3979–3988.
  • Kjems, J., A. D. Frankel, and P. A. Sharp. 1991. Specific regulation of mRNA splicing in vitro by a peptide from HIV-1 rev. Cell 67:169–178.
  • Kjems, J., and P. A. Sharp. 1993. The basic domain of rev from human immunodeficiency virus type 1 specifically blocks the entry of U4/U6/U5 small nuclear ribonucleoprotein in spliceosome assembly. J. Virol. 67:4769–4776.
  • Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Luhrmann, M. A. Garcia-Blanco, and J. L. Manley. 1994. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature (London) 368:119–124.
  • Krainer, A. R., A. Mayeda, D. Kozak, and G. Binns. 1991. Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70k, and Drosophila splicing regulators. Cell 66:383–394.
  • Lavigueur, A., H. La Branche, A. R. Kornblihtt, and B. Chabot. 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 7:2405–2417.
  • Lu, X., J. Heimer, D. Rekosh, and M.-L. Hammarskjold. 1990. U1 small nuclear RNA plays a direct role in the formation of a rev-regulated human immunodeficiency virus env mRNA that remains unspliced. Proc. Natl. Acad. Sci. USA 87:7598–7602.
  • Mardon, H. J., G. Sebastio, and F. E. Baralle. 1987. A role for exon sequences in alternative splicing of the human fibronectin gene. Nucleic Acids Res. 15:7725–7733.
  • Martarano, L., R. Stephens, N. Rice, and D. Derse. 1994. Equine infectious anemia virus trans-regulatory protein rev controls viral mRNA stability, accumulation, and alternative splicing. J. Virol. 68:3102–3111.
  • Mayeda, A., D. M. Helfman, and A. R. Krainer. 1993. Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF. Mol. Cell. Biol. 13:2993–3001.
  • Mayeda, A., and A. R. Krainer. 1992. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68:365–375.
  • McNally, M. T., and K. Beemon. 1992. Intronic sequences and 3′ splice sites control Rous sarcoma virus RNA splicing. J. Virol. 66:6–11.
  • McNally, M. T., R. R. Gontarek, and K. Beemon. 1991. Characterization of Rous sarcoma virus intronic sequences that negatively regulate splicing. Virology 185:99–108.
  • Melton, D. A., P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.
  • Moore, M. J., C. C. Query, and P. A. Sharp. 1993. Splicing of precursors to mRNA by the spliceosome, p. 303–357. In R. F. Gesteland and J. F. Atkins (ed.), The RNA world. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Nelson, K. K., and M. R. Green. 1990. Mechanism of cryptic splice site activation during pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 87:6253–6257.
  • Oshima, Y., and Y. Gotoh. 1987. Signals for the selection of a splice site in pre-mRNA. J. Mol. Biol. 195:247–259.
  • Ramchatesingh, J., A. M. Zahler, K. M. Neugebauer, M. B. Roth, and T. A. Cooper. 1995. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol. Cell. Biol. 15:4898–4907.
  • Roth, M. B., A. M. Zahler, and J. A. Stolk. 1991. A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. J. Cell Biol. 115:587–596.
  • Smith, C. W. J., J. G. Patton, and B. Nadal-Ginard. 1989. Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23:527–577.
  • Staffa, A., and A. Cochrane. 1994. The tat/rev intron of human immunodeficiency virus type 1 is inefficiently spliced because of suboptimal signals in the 3′ splice site. J. Virol. 68:3071–3079.
  • Staffa, A., and A. Cochrane. 1995. Identification of positive and negative splicing regulatory elements within the terminal tat/rev exon of human immunodeficiency virus type 1. Mol. Cell. Biol. 15:4597–4605.
  • Staknis, D., and R. Reed. 1994. SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14:7670–7682.
  • Stephens, R. M., D. Derse, and N. R. Rice. 1990. Cloning and characterization of cDNAs encoding equine infectious anemia virus Tat and putative Rev proteins. J. Virol. 64:3716–3725.
  • Stephens, R. M., and T. D. Schneider. 1992. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J. Mol. Biol. 228:1124–1136.
  • Stoltzfus, C. M., and S. J. Fogarty. 1989. Multiple regions in the Rous sarcoma virus src gene intron act in cis to affect the accumulation of unspliced RNA. J. Virol. 63:1669–1676.
  • Sun, Q., R. K. Hampson, and F. M. Rottman. 1993. In vitro analysis of bovine growth hormone pre-mRNA alternative splicing. Involvement of exon sequences and trans-acting factors. J. Biol. Chem. 268:15659–15666.
  • Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and F. M. Rottman. 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7:2598–2608.
  • Tanaka, K. A., A. Watakabe, and Y. Shimura. 1994. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol. 4:1347–1354.
  • Tian, M., and T. Maniatis. 1993. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell 74:105–114.
  • van Oers, C. C. M., J. Adema, H. Zandberg, T. C. Moen, and P. D. Bass. 1994. Two different sequence elements within exon 4 are necessary for calcitonin-specific splicing of the human calcitonin/calcitonin gene-related peptide I pre-mRNA. Mol. Cell. Biol. 14:951–960.
  • Watakabe, A., K. Tanaka, and Y. Shimura. 1993. The role of exon sequences in splice site selection. Genes Dev. 7:407–418.
  • Xu, R., J. Teng, and T. A. Cooper. 1993. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol. Cell. Biol. 13:3660–3674.
  • Yeakley, J. M., F. Hedjran, J.-P. Morfin, N. Merillat, M. G. Rosenfeld, and R. B. Emeson. 1993. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive intron and exon elements. Mol. Cell. Biol. 13:5999–6011.
  • Zahler, A. M., W. S. Lane, J. A. Stolk, and M. B. Roth. 1992. SR proteins—a conserved family of pre-messenger-RNA splicing factors. Genes Dev. 6:837–847.
  • Zahler, A. M., K. M. Neugebauer, W. S. Lane, and M. B. Roth. 1993. Distinct functions of SR proteins in alternative pre-messenger RNA splicing. Science 260:219–222.
  • Zuker, M., and P. Steigler. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9:133–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.