6
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Identification and Analysis of a Functional Human Homolog of the SPT4 Gene of Saccharomyces cerevisiae

, , , &
Pages 2848-2856 | Received 28 Dec 1995, Accepted 07 Mar 1996, Published online: 29 Mar 2023

REFERENCES

  • Adams, A. E. M., W. Shen, C.-S. Lin, J. Leavitt, and P. Matsudaira. 1995. Isoform-specific complementation of the yeast sac6 null mutation by human fimbrin. Mol. Cell. Biol. 15:69–75.
  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Aruffo, A., and B. Seed. 1987. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. Natl. Acad. Sci. USA 84:8573–8577.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1988. Current protocols in molecular biology. Greene Publishing Associates, New York.
  • Basrai, M. A., J. Kingsbury, D. Koshland, F. Spencer, and P. Hieter. 1996. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2838–2847.
  • Bassett, D., Jr., M. Boguski, F. Spencer, R. Reeves, M. Goebl, and P. Hieter. 1995. Comparative genomics, genome cross-referencing, and XREFdb. Trends Genet. 11:372–373.
  • Baudin, A., O. Ozier-Kalogeropolous, A. Denouel, F. Lacroute, and C. Cullin. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21:3329–3330.
  • Birnstiel, M. L., M. Busslinger, and K. Strub. 1985. Transcription termination and 3′ processing: the end is in site! Cell 41:349–359.
  • Boguski, M. S., T. M. J. Lowe, and C. M. Tolstoshev. 1993. dbEST-database for "expressed sequence tags." Nat. Genet. 4:332–333.
  • Buluwela, L., A. Forster, T. Boehm, and T. Rabbitts. 1989. A rapid procedure for colony screening using nylon filters. Nucleic Acids Res. 17:452.
  • Carlson, M., and B. C. Laurent. 1994. The SNF/SWI family of global transcriptional activators. Curr. Opin. Cell Biol. 6:396–402.
  • Chiang, P.-W., S.-Q. Wang, P. Smithivas, W.-J. Song, E. Crombez, A. Akhtar, R. Im, J. Greenfield, S. Ramamoorthy, M. V. Keuren, C. C. Blackburn, C.-H. Tsai, and D. M. Kurnit. Isolation and characterization of the human and mouse homologues of the yeast SPT4 gene. Genomics, in press.
  • Clark-Adams, C. D., D. Norris, M. A. Osley, J. S. Fassler, and F. Winston. 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2:150–159.
  • Dingwall, A. K., S. J. Beek, C. M. McCallum, J. W. Tamkun, G. V. Kaplana, S. P. Goff, and M. P. Scott. 1995. The Drosophila snr1 and brm proteins are related to yeast SNF/SWI proteins and are components of a large protein complex. Mol. Biol. Cell 6:777–791.
  • Drwinga, H. L., L. H. Toji, C. H. Kim, A. E. Greene, and R. A. Mulivor. 1993. NIGMS human/rodent somatic cell hybrid mapping panels 1 and 2. Genomics 16:311–314.
  • Elbie, R. 1992. A simple and efficient procedure for transformation ofyeasts. BioTechniques 13:18–20.
  • Gyuris, J., E. Golemis, H. Chertkov, and R. Brent. 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803.
  • Hartzog, G. A., and F. Winston. Unpublished data.
  • Heald, R., M. McLoughlin, and F. McKeon. 1993. Human Wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74:463–474.
  • Hereford, L., K. Fahrner, J. Woolford, Jr., and M. Rosbash. 1979. Isolation of yeast histone genes H2A and H2B. Cell 18:1261–1271.
  • Hirschhorn, J. N., S. A. Brown, C. D. Clark, and F. Winston. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6:2288–2298.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and R. E. Kingston. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature (London) 370:481–485.
  • Kalpana, G. V., S. Marmon, W. Wang, G. R. Crabtree, and S. P. Goff. 1994. Binding and stimulation of HIV-1 integrase by a human homologue of yeast transcription factor SNF5. Science 266:2002–2006.
  • Khazak, V., P. P. Sadhale, N. A. Woychik, R. Brent, and E. A. Golemis. 1995. Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology. Mol. Biol. Cell 6:759–775.
  • Kwon, H., A. N. Imbalzano, P. A. Khavari, R. E. Kingston, and M. R. Green. 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature (London) 370:477–481.
  • Malone, E. A., J. S. Fassler, and F. Winston. 1993. Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae. Mol. Gen. Genet. 237:449–459.
  • Malone, E. A., and F. Winston. Unpublished data.
  • Maricq, A. V., A. S. Peterson, A. J. Brake, R. M. Myers, and D. Julius. 1991. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437.
  • McAlpine, P. 1995. Human section, p. 39–42. In A. Stewart (ed.), Genetic nomenclature guide. Elsevier Trends Journals, Cambridge.
  • McKune, K., P. A. Moore, M. W. Hull, and N. A. Woychik. 1995. Six human RNA polymerase subunits functionally substitute for their yeast counterparts. Mol. Cell. Biol. 15:6895–6900.
  • McKune, K., and N. A. Woychik. 1994. Functional substitution of an essential yeast RNA polymerase subunit by its highly conserved mammalian counterpart. Mol. Cell. Biol. 14:4155–4159.
  • Meeks-Wagner, D., and L. H. Hartwell. 1986. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44:43–52.
  • Neigeborn, L., K. Rubin, and M. Carlson. 1986. Suppressors of snf2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast. Genetics 112:741–753.
  • Neiman, A. M., B. J. Stevenson, H.-P. Xu, G. F. Sprague, Jr., I. Herskowitz, M. Wigler, and S. Marcus. 1993. Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms. Mol. Biol. Cell 4:107–120.
  • Nishiwaki, K., T. Sano, and J. Miwa. 1993. emb-5, a gene required for the correct timing of gut precursor cell division during gastrulation in Caenorhadbitis elegans, encodes a protein similar to the yeast nuclear protein SPT6. Mol. Gen. Genet. 239:313–322.
  • Osborne, M. A., and P. A. Silver. 1993. Nucleocytoplasmic transport in the yeast Saccharomyces cerevisiae. Annu. Rev. Biochem. 62:219–254.
  • Paranjape, S. M., R. T. Kamakaka, and J. T. Kadonaga. 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297.
  • Peterson, C. L., and J. W. Tamkun. 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20:143–146.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed., vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Spencer, F., S. L. Gerring, C. Connelly, and P. Hieter. 1990. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124:237–249.
  • Swanson, M. S., M. Carlson, and F. Winston. 1990. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol. Cell. Biol. 10:4935–4941.
  • Swanson, M. S., E. A. Malone, and F. Winston. 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11:3009–3019.
  • Swanson, M. S., and F. Winston. 1992. SPT4, SPT5, and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132:325–336.
  • Takeda, J., R. Espinosa III, S. Eng, M. M. Le Beau, and G. I. Bell. 1995. Chromosomal assignment and tissue distribution of novel expressed sequence tags from a human pancreatic islet cDNA library. Genomics 29:276–281.
  • van Holde, K. E. 1988. Chromatin. Springer-Verlag, New York.
  • Wilson, I., H. Niman, R. Houghten, A. Cherenson, M. Connolly, and R. Lerner. 1984. The structure of an antigenic determinant in a protein. Cell 37:767–778.
  • Winston, F. 1992. Analysis of SPT genes: a genetic approach towards analysis of TFIID, histones and other transcription factors of yeast, p. 1271–1293. In S. L. McKnight and K. R. Yamamoto (ed.), Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Winston, F., and A. Bortvin. 1995. Unpublished data.
  • Winston, F., and M. Carlson. 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8:387–391.
  • Winston, F., C. Dollard, and S. L. Ricupero-Hovasse. 1995. Construction of a set of convenient S. cerevisiae strains that are isogenic to S288C. Yeast 11:53–55.
  • Xu, G., B. Lin, K. Tanaka, D. Dunn, D. Wood, R. Gesteland, R. White, R. Weiss, and F. Tamanoi. 1990. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63:835–841.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.