6
Views
92
CrossRef citations to date
0
Altmetric
Research Article

Bul1, a New Protein That Binds to the Rsp5 Ubiquitin Ligase in Saccharomyces cerevisiae

, , , &
Pages 3255-3263 | Received 23 Oct 1995, Accepted 26 Mar 1996, Published online: 29 Mar 2023

REFERENCES

  • Bartel, B., I. Wünning, and A. Varshavsky. 1990. The recognition component of the N-end rule pathway. EMBO J. 9:3179–3189.
  • Bork, P., and M. Sudol. 1994. The WW domain: a signaling site in dystrophin? Trends Biochem. Sci. 19:531–533.
  • Botstein, D., S. C. Fallo, S. E. Stewart, M. Brennan, S. Scherer, D. T. Stinchcomb, K. Struhl, and R. W. Davis. 1979. Sterile host yeast (SHY); a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Broach, J. R., J. N. Strathern, and J. B. Hicks. 1979. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8:121–133.
  • Chien, C.-T., P. L. Bartel, R. Sternglanz, and S. Fields. 1991. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88:9578–9582.
  • Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21.
  • Dohmen, J., K. Madura, B. Bartel, and A. Varshavsky. 1991. The N-end rule is mediated by the UBC2 (RAD6) ubiquitin-conjugating enzyme. Proc. Natl. Acad. Sci. USA 88:7351–7355.
  • Eisenmann, D. M., K. M. Arndt, S. L. Ricupero, J. W. Rooney, and F. Winston. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6:1319–1331.
  • Fields, S., and O. Song. 1989. A novel genetic system to detect proteinprotein interactions. Nature (London) 340:245–246.
  • Fields, S., and R. Sternglanz. 1994. The two-hybrid system: an assay for protein-protein interactions. Trends Genet. 10:286–292.
  • Finley, D., and V. Chaw. 1991. Ubiquitination. Annu. Rev. Cell Biol. 7:25–69.
  • Gietz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Glotzer, M., A. W. Murray, and M. W. Kirschner. 1991. Cyclin is degraded by the ubiquitin pathway. Nature (London) 349:132–138.
  • Goebl, M., and M. Yanagida. 1991. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci. 16:173–177.
  • Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101:181–191.
  • Happel, A. M., and F. Winston. 1992. A mutant tRNA affects δ-mediated transcription in Saccharomyces cerevisiae. Genetics 132:361–374.
  • Hershko, A., and A. Ciechanover. 1992. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61:761–807.
  • Hershko, A., H. Heller, S. Elias, and A. Ciechanover. 1983. Components of the ubiquitin-protein ligase system. J. Biol. Chem. 258:8206–8214.
  • Hochstrasser, M. 1995. Ubiquitin, proteasome, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 7:215–223.
  • Huibregtse, J. M., M. Scheffner, S. Beaudenon, and P. M. Howley. 1995. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92:2563–2567.
  • Huibregtse, J. M., Scheffner, and P. M. Howley. 1991. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10:4129–4135.
  • Huibregtse, J. M., Scheffner, and P. M. Howley. 1993. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13:775–784.
  • Inoue, H., H. Nojima, and H. Okayama. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28.
  • Irie, K., S. Nomoto, I. Miyajima, and K. Motsumoto. 1991. SGV1 encodes a CDC28/cdc2-related kinase required for a Gα subunit-mediated adaptive response to pheromone in S. cerevisiae. Cell 65:785–795.
  • Irniger, S., S. Piatti, C. Michaelis, and K. Nasmyth. 1995. Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81:269–277.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jentsch, S. 1992. The ubiquitin-conjugation system. Annu. Rev. Genet. 26:179–207.
  • Johnson, E. S., P. C. M. Ma, I. M. Ota, and A. Varshavsky. 1995. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270:17442–17456.
  • Jones, J. R., and L. Parkash. 1990. Yeast Saccharomyces cerevisiae selectable markers in pUC18 poly linkers. Yeast 6:363–366.
  • Kikuchi, Y. 1983. Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell 35:487–493.
  • Kikuchi, Y., and J. King. 1975. Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. J. Mol. Biol. 99:645–672.
  • Kikuchi, Y., Y. Oka, M. Kobayashi, Y. Uesono, A. Toh-e, and A. Kikuchi. 1994. A new yeast gene, HTR1, required for growth at high temperature, is needed for recovery from mating pheromone-induced G1 arrest. Mol. Gen. Genet. 245:107–116.
  • Kikuchi, Y., H. Shimatake, and A. Kikuchi. 1988. A yeast gene required for the G1-to-S transition encodes a protein containing an A-kinase target site and GTPase domain. EMBO J. 7:1175–1182.
  • King, R. W., J.-M. Peters, S. Tugendreich, M. Rolfe, P. Hieter, and M. W. Kirschner. 1995. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81:279–288.
  • Kölling, R., and C. P. Hollenberg. 1994. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 13:3261–3271.
  • Kumar, S., Y. Tomooka, and M. Noda. 1992. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Commun. 185:1155–1161.
  • Kuo, C.-L., and J. Campbell. 1983. Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation. Mol. Cell. Biol. 3:1730–1737.
  • Lamb, J. R., W. A. Michaud, R. S. Sikorski, and P. A. Hieter. 1994. Cdc16p, Cdc23p and Cdc27p form a complex essential for mitosis. EMBO J. 13:4321–4328.
  • Levin, D. E., and E. B. Heubusch. 1992. Mutants in S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J. Cell Biol. 116:1221–1229.
  • McGrath, J. P., S. Jentsch, and A. Varshavsky. 1991. UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10:227–236.
  • Peters, J.-M. 1994. Proteasomes: protein degradation machines of the cell. Trends Biochem. Sci. 19:377–382.
  • Rothblatt, J., and R. Schekman. 1989. Ahitchhiker’s guide to analysis ofthe secretory pathway in yeast. Methods Cell Biol. 32:3–36.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Scheffner, M., J. M. Huibregtse, R. D. Vierstra, and P. M. Howley. 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505.
  • Scheffner, M., U. Nuber, and J. M. Huibregtse. 1995. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature (London) 373:81–83.
  • Scheffner, M., B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. Howley. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136.
  • Schwob, E., T. Böhm, M. D. Mendenhall, and K. Nasmyth. 1994. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79:233–244.
  • Sherman, F., G. R. Fink, and J. M. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Stinchcomb, D. T., C. Mann, and R. W. Davis. 1982. Centromeric DNA from Saccharomyces cerevisiae. J. Mol. Biol. 158:157–179.
  • Struhl, K., D. T. Stinchcomb, S. Scherer, and R. W. Davis. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.
  • Sudakin, V., D. Ganoth, A. Dahan, H. Heller, J. Hershko, F. C. Luca, J. V. Ruderman, and A. Hershko. 1995. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6:185–198.
  • Sutton, A., D. Immanuel, and K. T. Arndt. 1991. The SIT4 protein phosphatase function in late G1 for progression into S phase. Mol. Cell. Biol. 11:2133–2148.
  • Tanaka, K., M. Nakafuku, F. Tamanoi, Y. Kajiro, K. Matsumoto, and A. Toh-e. 1990. IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol. Cell. Biol. 10:4304–4313.
  • Uesono, Y., A. Fujita, A. Toh-e, and Y. Kikuchi. 1994. The MCS1/SSD1/ SRK1/SSL1 gene is involved in stable maintenance of the chromosome in yeast. Gene 143:135–138.
  • Utsugi, T., et al. Unpublished data.
  • Vojtek, A. B., S. M. Hollenberg, and J. A. Cooper. 1993. Mammalian ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214.
  • Watanabe, Y., K. Irie, and K. Matsumoto. 1995. Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol. 15:5740–5749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.