3
Views
66
CrossRef citations to date
0
Altmetric
Research Article

EGT2 Gene Transcription Is Induced Predominantly by Swi5 in Early G1

, &
Pages 3264-3274 | Received 17 Oct 1995, Accepted 08 Mar 1996, Published online: 29 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545.
  • Amon, A., M. Tyers, B. Futcher, and K. Nasmyth. 1993. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate and repress G1 cyclins. Cell 74:993–1007.
  • Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Bonneaud, N., O. Ozier-Kalogeropoulos, G. Y. Li, M. Labouesse, L. Minvielle-Sebastia, and F. Lacroute. 1991. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615.
  • Brazas, R. B., and D. J. Stillman. 1993. Identification and purification of a protein that binds DNA cooperatively with the yeast SWI5 protein. Mol. Cell. Biol. 13:5524–5537.
  • Brazas, R. B., and D. J. Stillman. 1993. The Swi5 zinc-finger and Grf10 homeodomain proteins bind DNA cooperatively at the yeast HO promoter. Proc. Natl. Acad. Sci. USA 90:11237–11241.
  • Breeden, L., and K. A. Nasmyth. 1987. Cell cycle control of the yeast HO gene: cis- and trans-Acting regulators. Cell 48:389–397.
  • Breitwieser, W., C. Price, and T. Schuster. 1993. Identification of a gene encoding a novel zinc finger protein in Saccharomyces cerevisiae. Yeast 9:551–556.
  • Butler, G., and D. J. Thiele. 1991. ACE2, an activator of yeast metallothionein expression which is homologous to SWI5. Mol. Cell. Biol. 11:476–485.
  • Cross, F. R., and A. H. Tinkelenberg. 1991. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65:875–883.
  • De Nobel, J. G., F. M. Klis, A. Ram, H. van Unen, J. Priem, T. Munnik, and H. van Den Ende. 1991. Cyclic variations in the permeability of the cell wall of Saccharomyces cerevisiae. Yeast 7:589–598.
  • Dirick, L., T. Moll, H. Auer, and K. Nasmyth. 1992. A central role for Swi6 in modulating cell cycle Start specific transcription in yeast. Nature (London) 357:508–513.
  • Dirick, L., and K. A. Nasmyth. 1991. Positive feedback in the activation of G1 cyclins in yeast. Nature (London) 35:754–757.
  • Dohrman, P. R., G. Butler, K. Tamai, S. Dorland, J. R. Green, D. J. Thiele, and D. Stillman. 1992. Parallel pathways of gene regulation: homologous regulators SWI5 and ACE2 differentially control transcription of HO and chitinase. Genes Dev. 6:93–104.
  • Elledge, S. J., and R. W. Davis. 1990. Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev. 4:740–751.
  • Epstein, C. B., and F. R. Cross. 1992. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6:1695–1706.
  • Ghiara, J. B., H. E. Richardson, K. Sugimoto, M. Henze, D. J. Lew, C. Wittenberg, and S. I. Reed. 1991. A cyclin B homolog in S. cerevisiae: chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell 65:163–174.
  • Gimeno, C. J., P. O. Ljungdahl, C. A. Styles, and G. R. Fink. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnston, L. H. 1992. Cell cycle control of gene expression in yeast. Trends Cell. Biol. 2:53–357.
  • Kataoka, T., S. Powers, C. McGill, O. Fasano, J. Strathern, J. Broach, and M. Wigler. 1984. Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37:437–445.
  • Klis, F. M. 1994. Cell wall assembly in yeast. Yeast 10:851–869.
  • Koch, C., and K. Nasmyth. 1994. Cell cycle regulated transcription in yeast. Curr. Opin. Cell Biol. 6:451–459.
  • Kovacech, B., and T. Schuster. Unpublished data.
  • Kuranda, M. J., and P. W. Robbins. 1991. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266:19758–19767.
  • Link, A. J., and M. V. Olson. 1991. Physical map of the Saccharomyces cerevisiae genome at 110-kb resolution. Genetics 127:681–698.
  • Matsumoto, K., I. Uno, and T. Ishikawa. 1983. Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP dependent protein kinase. Cell 32:417–423.
  • Moll, T., G. Tebb, U. Surana, H. Robitsh, and K. Nasmyth. 1991. The role of phosphorylation and the CDC28 protein kinase cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66:743–758.
  • Nasmyth, K. 1985. A repetitive DNA sequence that confers cell-cycle START (CDC28)-dependent transcription of the HO gene in yeast. Cell 42:225–235.
  • Nasmyth, K. 1993. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol. 5:166–179.
  • Nasmyth, K., G. Adolf, D. Lydall, and A. Seddon. 1990. The identification of a second cell cycle control on the HO promoter in yeast: cell cycle regulation of SWI5 nuclear entry. Cell 62:631–647.
  • Nasmyth, K., and L. Dirick. 1991. The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast. Cell 66:995–1013.
  • Nasmyth, K., A. Seddon, and G. Ammerer. 1987. Cell cycle regulation of SWI5 is required for mother-cell-specific HO transcription in yeast. Cell 49:549–558.
  • Nasmyth, K., D. Stillman, and D. Kipling. 1987. Both positive and negative regulators of HO transcription are required for Mother-cell-specific matingtype switching in yeast. Cell 48:579–587.
  • Nugroho, T. T., and M. D. Mendenhall. 1994. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol. Cell. Biol. 14:3320–3328.
  • Olson, M. V., J. E. Dutchik, M. Y. Graham, G. M. Brodeur, C. Helms, M. Frank, M. MacCollin, R. Scheinman, and T. Frank. 1986. Random-clone strategy for genomic restriction mapping in yeast. Proc. Natl. Acad. Sci. USA 83:7826–7830.
  • Piatti, S., C. Lengauer, and K. Nasmyth. 1995. Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a ‘reductional’ anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 14:3788–3799.
  • Price, C., K. Nasmyth, and T. Schuster. 1991. A general approach to the isolation of cell cycle-regulated genes in the budding yeast, Saccharomyces cerevisiae. J. Mol. Biol. 218:543–556.
  • Price, C., and T. Schuster. Unpublished data.
  • Pringle, J. 1991. Staining of bud scars and other cell wall chitin with Calcofluor. Methods Enzymol. 194:732–735.
  • Richardson, H., D. J. Lew, M. Henze, K. Sugimoto, and S. Reed. 1992. Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes Dev. 6:2021–2034.
  • Rigaud, G., J. Roux, R. Pictet, and T. Grange. 1991. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67:977–986.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Schwob, E., T. Böhm, M. D. Mendenhall, and K. Nasmyth. 1994. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79:233–244.
  • Schwob, E., and K. Nasmyth. 1993. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7:1160–1175.
  • Scott, J. H., and R. Schekman. 1980. Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J. Bacteriol. 142:414–423.
  • Sloat, B. F., and J. R. Pringle. 1978. A mutant of yeast defective in cellular morphogenesis. Science 200:1171–1173.
  • Surana, U., H. Robitsch, C. Price, T. Schuster, I. Fitch, A. B. Futcher, and K. Nasmyth. 1991. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65:145–161.
  • Tebb, G., T. Moll, C. Dowzer, and K. Nasmyth. 1993. SWI5 instability may be necessary but not sufficient for asymmetric HO expression in yeast. Genes Dev. 7:517–528.
  • Toda, T., I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto, and M. Wigler. 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36.
  • Vasquez de Aldana, C. R., J. Correa, P. San Secundo, A. Bueno, A. R. Nebreda, E. Mendez, and F. del Ray. 1991. Nucleotide sequence of the exo-1,3-β-glucanase-encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97:173–182.
  • von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14:17–21.
  • Wittenberg, C., K. Sugimoto, and S. I. Reed. 1990. G1 specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62:225–237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.