3
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Evidence for Involvement of trans-Acting Factors in Selection of the AUG Start Codon during Eukaryotic Translational Initiation

&
Pages 3523-3534 | Received 09 Nov 1995, Accepted 01 Apr 1996, Published online: 29 Mar 2023

REFERENCES

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman, and K. Struhl (ed.). 1989. Current protocols in molecular biology. Greene Publishing Associates, Inc., New York.
  • Butler, J. S., and J. M. J. Clark 1984. Eucaryotic initiation factor 4B of wheat germ binds to the translation initiation region of a messenger ribonucleic acid. Biochemistry 23:809–815.
  • Cavener, D. R., and S. C. Ray. 1991. Eukaryotic start and stop translation sites. Nucleic Acids Res. 19:3185–3192.
  • Chen, C., and P. Sarnow. 1995. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415–417.
  • Cigan, A. M., and T. F. Donahue. 1987. Sequence and structural features associated with translational initiator regions in yeast—a review. Gene 59:1–18.
  • Cigan, A. M., L. Feng, and T. F. Donahue. 1988. tRNAimet functions in directing the scanning ribosome to the start site of translation. Science 242:93–96.
  • Cigan, A. M., E. K. Pabich, L. Feng, and T. F. Donahue. 1989. Yeast translation initiation suppressor sui2 encodes the a subunit of eukaryotic initiation factor 2 and shares sequence identity with the human a subunit. Proc. Natl. Acad. Sci. USA 86:2784–2788.
  • Dasso, M. C., S. C. Milburn, J. W. B. Hershey, and R. J. Jackson. 1990. Selection of the 5′ proximal translation initiation site is influenced by mRNA and eIF-2 concentrations. Eur. J. Biochem. 187:361–371.
  • De Wet, J. R., K. V. Wood, M. DeLuca, D. R. Helinski, and S. Subramani. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7:725–737.
  • Donahue, T. F., and A. M. Cigan. 1988. Genetic selection for mutations to reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol. Cell. Biol. 8:2955–2963.
  • Donahue, T. F., A. M. Cigan, E. K. Pabich, and B. Castilho-Valavicius. 1988. Mutations at a Zn(II) finger motif in the yeast eIF-2β gene alter ribosomal start-site selection during the scanning process. Cell 54:621–632.
  • Dorner, A. J., B. L. Semler, R. J. Jackson, R. Hanecak, E. Duprey, and E. Wimmer. 1984. In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J. Virol. 50:507–514.
  • Englard, S., and S. Seifert. 1990. Precipitation techniques. Methods Enzymol. 182:285–300.
  • Goss, D. J., C. L. Woodley, and A. J. Wahba. 1987. A fluorescence study of the binding of eucaryotic initiation factors to messenger RNA and messenger RNA analogues. Biochemistry 26:1551–1556.
  • Gottlieb, E., and J. A. Steitz. 1989. Function of the mammalian La protein: Evidence for its action in transcription termination by RNA polymerase III. EMBO J. 8:851–861.
  • Grünert, S., and R. J. Jackson. 1994. The immediate downstream codon strongly influences the efficiency of utilization of eukaryotic translation initiation codons. EMBO J. 13:3618–3630.
  • Habets, W. J., J. H. den Brok, A. M. T. Boerbooms, L. B. A. van de Putte, and W. J. van Venrooij. 1983. Characterization of the SS-B (La) antigen in adenovirus-infected and uninfected HeLa cells. EMBO J. 2:1625–1631.
  • Hambidge, S. J., and P. Sarnow. 1991. Terminal 7-methyl-guanosine cap structure on the normally uncapped 5′ noncoding region of poliovirus mRNA inhibits its translation in mammalian cells. J. Virol. 65:6312–6315.
  • Hovanessian, A. G. 1989. The double-stranded RNA-activated protein kinase induced by interferon: dsRNA-PK. J. Interferon Res. 9:641–647.
  • Hunter, T., T. Hunt, R. J. Jackson, and H. D. Robertson. 1975. The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J. Biol. Chem. 250:409–417.
  • Iizuka, N., H. Yondkawa, and A. Nomoto. 1991. Nucleotide sequences important for translation initiation of enterovirus RNA. J. Virol. 65:4867–4873.
  • Jacobson, S. J., D. A. M. Konings, and P. Sarnow. 1993. Biochemical and genetic evidence for a pseudoknot structure at the 3′ terminus of the poliovirus RNA genome and its role in viral RNA amplification. J. Virol. 67:2961–2971.
  • Kaempfer, R., J. van Emmelo, and W. Fiers. 1981. Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5′-terminal sequence comprising the ribosome binding site. Proc. Natl. Acad. Sci. USA 78:1542–1546.
  • Kozak, M. 1984. Selection of initiation sites by eucaryotic ribosomes: effects of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res. 12:3873–3893.
  • Kozak, M. 1986. Point mutations define a sequence flanking the initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292.
  • Kozak, M. 1987. An analysis of 5′-noncoding sequences upstream from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15:8125–8148.
  • Kozak, M. 1987. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196:947–950.
  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell. Biol. 108:229–241.
  • Mathews, M. B. 1993. Viral evasion of cellular defense mechanisms: regulation of the protein kinase DAI by RNA effectors. Semin. Virol. 4:247–257.
  • McBratney, S., and P. Sarnow. 1995. Unpublished observation.
  • Meerovitch, K., J. Pelletier, and N. Sonenberg. 1989. A cellular protein that binds to the 5′-noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev. 3:1026–1043.
  • Meerovitch, K., Y. V. Svitkin, H. S. Lee, F. Lejbkowicz, D. J. Kenan, E. K. L. Chan, V. I. Agol, J. D. Keene, and N. Sonenberg. 1993. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J. Virol. 67:3798–3807.
  • Merrick, W. C. 1992. Mechanism and regulation of eukaryotic protein synthesis. Microbiol. Rev. 56:291–315.
  • Merrick, W. C. 1994. Eukaryotic protein synthesis: an in vitro analysis. Biochimie 76:822–830.
  • Perez-Bercoff, P., and R. Kaempfer. 1982. Genomic RNA of mengovirus. V. Recognition of common features by ribosomes and eukaryotic initiation factor 2. J. Virol. 41:30–41.
  • Rinke, J., and J. A. Steitz. 1982. Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La lupus antibodies. Cell 29:149–159.
  • Sargan, D. R., S. P. Gregory, and P. H. W. Butterworth. 1982. A possible novel interaction between the 3′-end of 18S rRNA and the 5′-leader sequence of many eukaryotic mRNAs. FEBS Lett. 147:133–136.
  • Sarnow, P. 1989. Translation of glucose-regulated protein 78/immunoglobulin heavy-chain binding protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent translation of cellular mRNA is inhibited. Proc. Natl. Acad. Sci. USA 86:5795–5799.
  • Sarnow, P., Y. S. Ho, J. Williams, and A. J. Levine. 1982. Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54kd cellular protein in transformed cells. Cell 28:387–394.
  • Stade, K., J. Rinke-Appel, and R. Brimacombe. 1989. Site-directed crosslinking of mRNA analogues to the Escherichia coli ribosome; identification of 30S ribosomal components that can be cross-linked to the mRNA at various points 5′ with respect to the decoding site. Nucleic Acids Res. 23:9889–9908.
  • Svitkin, Y. V., A. Pause, and N. Sonenberg. 1994. La autoantigen alleviates translational repression by the 5′ leader of the human immunodeficiency virus type 1 mRNA. J. Virol. 68:7001–7007.
  • Tan, E. M. 1989. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv. Immunol. 44:93–151.
  • Wyatt, J. R., E. J. Sontheimer, and J. A. Steitz. 1992. Site-specific crosslinking of mammalian U5 snRNP to the 5′ splice site before the first step of pre-mRNA splicing. Genes Dev. 6:2542–2553.
  • Yoon, H., and T. F. Donahue. 1992. The sui1 suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNAiMet recognition of the start codon. Mol. Cell. Biol. 12:248–260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.