15
Views
48
CrossRef citations to date
0
Altmetric
Research Article

Transcriptional Regulation of a Sterol-Biosynthetic Enzyme by Sterol Levels in Saccharomyces cerevisiae

&
Pages 3981-3989 | Received 15 Mar 1996, Accepted 01 May 1996, Published online: 29 Mar 2023

REFERENCES

  • Barnes, G., W. J. Hansen, C. L. Holcomb, and J. Rine. 1984. Asparagine- linked glycosylation in Saccharomyces cerevisiae: genetic analysis of an early step. Mol. Cell. Biol. 4:2381–2388.
  • Basson, M. E., R. L. Moore, J. O’Rear, and J. Rine. 1987. Identifying mutations in duplicated functions in Saccharomyces cerevisiae: recessive mutations in HMG-CoA reductase genes. Genetics 117:645–655.
  • Basson, M. E., M. Thorsness, M. J. Finer, R. M. Stroud, and J. Rine. 1988. Structural and functional conservation between yeast and human 3-hydroxy- 3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Mol. Cell. Biol. 8:3797–3808.
  • Bergstrom, J. D., M. M. Kurtz, D. J. Rew, A. M. Amend, J. D. Karkas, R. G. Bostedor, V. S. Bansal, C. Dufresne, F. L. VanMiddlesworth, O. D. Hensens, et al. 1993. Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc. Natl. Acad. Sci. USA 90:80–84.
  • Briggs, M. R., C. Yokoyama, X. Wang, M. S. Brown, and J. L. Goldstein. 1993. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. J. Biol. Chem. 268:14490–14496.
  • Caponigro, G., D. Muhlrad, and R. Parker. 1993. A small segment of the MATa1 transcript promotes mRNA decay in yeast: a stimulatory role for rare codons. Mol. Cell. Biol. 13:5141–5148.
  • Dawson, P. A., S. L. Hofmann, D. R. van der Westhuyzen, T. C. Sudhof, M. S. Brown, and J. L. Goldstein. 1988. Sterol-dependent repression of low density lipoprotein receptor promoter mediated by 16-base pair sequence adjacent to binding site for transcription factor Sp1. J. Biol. Chem. 263:3372–3379.
  • Dawson, P. A., J. E. Metherall, N. D. Ridgway, M. S. Brown, and J. L. Goldstein. 1991. Genetic distinction between sterol-mediated transcriptional and posttranscriptional control of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 266:9128–9134.
  • Dawson, P. A., N. D. Ridgway, C. A. Slaughter, M. S. Brown, and J. L. Goldstein. 1989. cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper. J. Biol. Chem. 264:16798–16803.
  • Dawson, P. A., D. R. Van der Westhuyzen, J. L. Goldstein, and M. S. Brown. 1989. Purication of oxysterol binding protein from hamster liver cytosol. J. Biol. Chem. 264:9046–9052.
  • Devereux, J., P. Haeberli, and O. Smithies. 1994. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • Dimster-Denk, D., and R. Hampton. Unpublished observations.
  • Dimster-Denk, D., M. K. Thorsness, and J. Rine. 1994. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Mol. Biol. Cell 5:655–665.
  • Evans, M. J., and J. E. Metherall. 1993. Loss of transcriptional activation of three sterol-regulated genes in mutant hamster cells. Mol. Cell. Biol. 13:5175–5185.
  • Ferre-D’Amare, A. R., G. C. Prendergast, E. B. Ziff, and S. K. Burley. 1993. Recognitin by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature (London) 363:38–45.
  • Gasic, G. 1994. Basic-helix-loop-helix transcription factor and sterol sensor in a single membrane-bound molecule. Cell 77:17–19.
  • Goldstein, J. L., and M. S. Brown. 1990. Regulation of the mevalonate pathway. Nature (London) 343:425–430.
  • Hagen, D. C., and G. F. Sprague, Jr. 1984. Induction of the yeast a-specific STE3 gene by the peptide pheromone a-factor. J. Mol. Biol. 178:835–852.
  • Hampton, R. Y., and J. Rine. 1994. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J. Cell Biol. 125:299–312.
  • Hiser, L., M. E. Basson, and J. Rine. 1994. ERG10 from Saccharomyces cerevisiae encodes acetoacetyl-CoA thiolase. J. Biol. Chem. 269:31383–31389.
  • Hua, X., C. Yokoyama, J. Wu, M. R. Briggs, M. S. Brown, J. L. Goldstein, and X. Wang. 1993. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl. Acad. Sci. USA 90:11603–11607.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells with alkali cations. J. Bacteriol. 153:163–168.
  • Jiang, B., J. L. Brown, J. Sheraton, N. Fortin, and H. Bussey. 1994. A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein. Yeast 10:341–353.
  • Jones, K. A., and L. Prakash. 1990. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast 6:363–366.
  • Kandutsch, A. A., H. W. Chen, and H. J. Geiniger. 1978. Biological activity of some oxygenated sterols. Science 201:498–501.
  • Kandutsch, A. A., H. W. Chen, and E. P. Shown. 1977. Binding of 25-hydroxycholesterol and cholesterol to different cytoplasmic proteins. Proc. Natl. Acad. Sci. USA 74:2500–2506.
  • Kandutsch, A. A., and E. B. Thompson. 1980. Cytosolic proteins that bind oxygenated sterols. J. Biol. Chem. 255:10813–10826.
  • Kohrer, K., and H. Domdey. 1991. Preparation of high molecular weight RNA. Methods Enzymol. 194:398–405.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Lohning, C., and M. Ciriacy. 1994. The TYE7 gene of Saccharomyces cerevisiae encodes a putative bHLH-ZIP transcription factor required for Ty1- mediated gene expression. Yeast 10:1329–1339.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Metherall, J. E., J. L. Goldstein, K. L. Luskey, and M. S. Brown. 1989. Loss of transcriptional repression of three sterol-regulated genes in mutant hamster cells. J. Biol. Chem. 264:15634–15641.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Osborne, T. F. 1991. Single nucleotide resolution of sterol regulatory region in promoter for 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Biol. Chem. 266:13947–13951.
  • Osborne, T. F., G. Gil, J. L. Goldstein, and M. S. Brown. 1988. Operator constitutive mutation of 3-hydroxy-3-methylglutaryl coenzyme A reductase promoter abolishes protein binding to sterol regulatory element. J. Biol. Chem. 263:3380–3387.
  • Parks, L. W., L. D. K. Bottema, R. J. Rodriguez, and T. A. Lewis. 1985. Yeast sterols: yeast mutants as tools for the study of sterol metabolism. Methods Enzymol. 111:333–346.
  • Robinson, G. W., Y. H. Tsay, B. K. Kienzle, C. A. Smith-Monroy, and R. W. Bishop. 1993. Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation. Mol. Cell. Biol. 13:2706–2717.
  • Sato, R., J. Yang, X. Wang, M. J. Evans, Y. K. Ho, J. L. Goldstein, and M. S. Brown. 1994. Assignment of the membrane attachment, DNA binding, and transcriptional activation domains of sterol regulatory element-binding protein-1 (SREBP-1). J. Biol. Chem. 269:17267–17273.
  • Schafer, W. R., R. Kim, R. Sterne, J. Thorner, S.-H. Kim, and J. Rine. 1989. Genetic and pharmacological suppression of oncogenic mutations in Ras genes of yeast and humans. Science 245:379–385.
  • Schiestl, R. H., and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339–346.
  • Servouse, M., and F. Karst. 1986. Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem. J. 240:541–547.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Siperstein, J. R., and V. M. Fagan. 1966. Feedback control of mevalonate synthesis by dietary cholesterol. J. Biol. Chem. 241:602–609.
  • Smith, J. R., T. F. Osborne, M. S. Brown, J. L. Goldstein, and G. Gil. 1988. Multiple sterol regulatory elements in promoter for hamster 3-hydroxy-3-methylglutaryl-coenzyme A synthase. J. Biol. Chem. 263:18480–18487.
  • Smith, J. R., T. F. Osborne, J. L. Goldstein, and M. S. Brown. 1990. Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. J. Biol. Chem. 265:2306–2310.
  • Spear, D. H., J. Ericsson, S. M. Jackson, and P. A. Edwards. 1994. Identification of a 6-base pair element involved in the sterol-mediated transcriptional regulation of farnesyl diphosphate synthase. J. Biol. Chem. 269:25212–25218.
  • Spear, D. H., S. Y. Kutsunai, C. C. Correll, and P. A. Edwards. 1992. Molecular cloning and promoter analysis of the rat liver farnesyl diphosphate synthase gene. J. Biol. Chem. 267:14462–14469.
  • Sudhof, T. C., D. W. Russell, M. S. Brown, and J. L. Goldstein. 1987. 42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell 48:1061–1069.
  • Sudhof, T. C., D. R. Van der Westhuyzen, J. L. Goldstein, M. S. Brown, and D. W. Russell. 1987. Three direct repeats and a TATA-like sequence are required for regulated expression of the human low density lipoprotein receptor gene. J. Biol. Chem. 262:10773–10779.
  • Taylor, F. R., S. E. Saucier, E. P. Shown, E. J. Parish, and A. A. Kandutsch. 1984. Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J. Biol. Chem. 259:12382–12387.
  • Thorsness, M., W. Schafer, L. D’Ari, and J. Rine. 1989. Positive and negative transcriptional control by heme of genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5702–5712.
  • Trocha, P. J., and D. B. Sprinson. 1976. Location and regulation of early enzymes of sterol biosynthesis in yeast. Arch. Biochem. Biophys. 174:45–51.
  • Wang, X., M. R. Briggs, X. Hua, C. Yokoyama, J. L. Goldstein, and M. S. Brown. 1993. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. J. Biol. Chem. 268:14497–14504.
  • Wang, X., R. Sato, M. S. Brown, X. Hua, and J. L. Goldstein. 1994. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77:53–62.
  • Wright, R., M. Basson, L. D’Ari, and J. Rine. 1988. Increased amounts of HMG-CoA reductase induce “karmellae”: a proliferation of stacked membrane pairs surrounding the yeast nucleus. J. Cell Biol. 107:101–114.
  • Yang, J., M. S. Brown, Y. K. Ho, and J. L. Goldstein. 1995. Three different rearrangements in a single intron truncate sterol regulatory element binding protein-2 and produce sterol-resistant phenotype in three cell lines. Role of introns in protein evolution. J. Biol. Chem. 270:12152–12161.
  • Yang, J., R. Sato, J. L. Goldstein, and M. S. Brown. 1994. Sterol-resistant transcription in CHO cells caused by gene rearrangement that truncates SREBP-2. Genes Dev. 8:1910–1919.
  • Yokoyama, C., X. Wang, M. R. Briggs, A. Admon, J. Wu, X. Hua, J. L. Goldstein, and M. S. Brown. 1993. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75:187–197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.