5
Views
66
CrossRef citations to date
0
Altmetric
Research Article

YMXM Motifs and Signaling by an Insulin Receptor Substrate 1 Molecule without Tyrosine Phosphorylation Sites

, , , , , , , , , & show all
Pages 4147-4155 | Received 04 Jan 1996, Accepted 13 May 1996, Published online: 29 Mar 2023

REFERENCES

  • Araki, E., M. A. Lipes, M. E. Patti, J. C. Bruning, B. Haag, III, R. S. Johnson, and C. R. Kahn. 1994. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature (London) 372:186–190.
  • Backer, J. M., M. G. Myers, Jr., S. E. Shoelson, D. J. Chin, X. J. Sun, M. Miralpeix, P. Hu, B. Margolis, E. Y. Skolnik, J. Schlessinger, and M. F. White. 1992. The phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11:3469–3479.
  • Carpenter, C. L., K. R. Auger, B. C. Duckworth, W.-M. Hou, B. Schaffhausen, and L. C. Cantley. 1993. A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity. Mol. Cell. Biol. 13:1657–1665.
  • Cheatham, R. B., C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. 1994. Phosphatidylinositol 3′-kinase activation is required for insulin stimulation of pp70 S6 kinase DNA synthesis and glucose transporter translocation. Mol. Cell. Biol. 14:4902–4911.
  • Chen, R. H., C. Abate, and J. Blenis. 1993. Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA 90:10952–10956.
  • Chung, J., T. C. Grammer, K. P. Lemon, A. Kazlauskas, and J. Blenis. 1994. PDGF- and insulin-dependent pp70S6k activation mediated by phosphati- dylinositol-3-OH kinase. Nature (London) 370:71–75.
  • Chung, J., C. J. Kuo, G. R. Crabtree, and J. Blenis. 1992. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinase. Cell 69:1227–1236.
  • Dhand, R., I. Hiles, G. Panayotou, S. Roche, M. J. Fry, I. Gout, N. F. Totty, O. Truong, P. Vicendo, K. Yonezawa, M. Kasuga, S. A. Courtneidge, and M. D. Waterfield. 1994. PI-3-kinase is a dual specificity enzyme - autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 13:522–533.
  • Escobedo, J. A., D. R. Kaplan, W. M. Kavanaugh, C. W. Turck, and L. T. Williams. 1991. A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol. Cell. Biol. 11:1125–1132.
  • Fantl, W. J., J. A. Escobedo, G. A. Martin, C. W. Turck, M. del Rosario, F. McCormick, and L. T. Williams. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signalling pathways. Cell 69:413–423.
  • Fingar, D. C., S. F. Hausdorff, J. Blenis, and M. J. Birnbaum. 1993. Dissociation of pp70 ribosomal protein S6 kinase from insulin-stimulated glucose transport in 3T3-L1 adipocytes. J. Biol. Chem. 268:3005–3008.
  • Hiles, I. D., M. Otsu, S. Volinna, M. J. Fry, I. Gout, R. Dhand, G. Panayotou, F. Ruiz-Larrea, A. Thompson, N. F. Totty, J. J. Hsuan, S. A. Courtneidge, P. J. Parker, and M. D. Waterfield. 1992. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70:419–429.
  • Joly, M., A. Kazlauskas, F. S. Fay, and S. Corvera. 1994. Disruption of PDGF receptor trafficking by mutation of its PI-3 kinase binding sites. Science 263:684–687.
  • Kapeller, R., and L. C. Cantley, Jr. 1994. Phosphatidylinositol 3-kinase. Bio. Essays 16:565–576.
  • Koch, C. A., D. J. Anderson, M. F. Moran, C. A. Ellis, and T. Pawson. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674.
  • Kundra, V., J. A. Escobedo, A. Kazlauskas, H. K. Kim, S. G. Rhee, L. T. Williams, and B. R. Zetter. 1994. Regulation of chemotaxis by the platelet- derived growth factor receptor-beta. Nature (London) 367:474–476.
  • Lam, K., C. L. Carpenter, N. B. Ruderman, J. C. Friel, and K. L. Kelly. 1994. The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. J. Biol. Chem. 269:20648–20652.
  • Miralpeix, M., X. J. Sun, J. M. Backer, M. G. Myers, Jr., E. Araki, and M. F. White. 1992. Insulin stimulates tyrosine phosphorylation of multiple high molecular weight substrates in FAO hepatoma cells. Biochemistry 31:9031–9039.
  • Myers, M. G., Jr., J. M. Backer, X. J. Sun, S. E. Shoelson, P. Hu, J. Schlessinger, M. Yoakim, B. Schaffhausen, and M. F. White. 1992. IRS-1 activates the phosphatidylinositol 3′-kinase by associating with the src homology 2 domains of p85. Proc. Natl. Acad. Sci. USA 89:10350–10354.
  • Myers, M. G., Jr., T. C. Grammer, J. Brooks, E. M. Glasheen, L. M. Wang, X. J. Sun, J. Blenis, J. H. Pierce, and M. F. White. 1995. The pleckstrin homology domain in IRS-1 sensitizes insulin signaling. J. Biol. Chem. 270:11715–11718.
  • Myers, M. G., Jr., T. C. Grammer, L. M. Wang, X. J. Sun, J. H. Pierce, J. Blenis, and M. F. White. 1994. IRS-1 mediates PI 3′-kinase and p70s6k signaling during insulin, IGF-1 and IL-4 stimulation. J. Biol. Chem. 269:28783–28789.
  • Myers, M. G., Jr., X. J. Sun, and M. F. White. 1994. The IRS-1 signaling system. Trends Biochem. Sci. 19:289–294.
  • Myers, M. G., Jr., L.-M. Wang, X. J. Sun, Y. Zhang, L. Yenush, J. Schlessinger, J. H. Pierce, and M. F. White. 1994. Role of IRS-1−GRB-2 complexes in insulin signaling. Mol. Cell. Biol. 14:3577–3587.
  • Myers, M. G., Jr., and M. F. White. 1993. The new elements in insulin signaling. Insulin receptor substrate-1 and proteins with SH2 domains. Diabetes 42:643–650.
  • Myers, M. G., Jr., and M. F. White. 1995. New frontiers in insulin receptor substrate signaling. Trends Endocrinol. Metab. 6:209–215.
  • Myers, M. G., Jr., and M. F. White. Unpublished data.
  • Myers, M. G., Jr., and M. F. White. Unpublished data.
  • Myers, M. G., Jr., and M. F. White. 1996. Unpublished data.
  • Otsu, M., I. Hiles, I. Gout, M. J. Fry, F. Ruis-Larrea, G. Panayotou, A. Thompson, R. Dhand, J. Hsuan, N. Totty, A. D. Smith, S. J. Morgan, S. A. Courtneidge, P. J. Parker, and M. D. Waterfield. 1991. Characterization of two 85 kD proteins that associate with receptor tyrosine kinases, middle-T/ pp60c-src complexes and PI3-kinase. Cell 65:91–104.
  • Pluskey, S., T. J. Wandless, C. T. Walsh, and S. E. Shoelson. 1995. Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains. J. Biol. Chem. 270:2897–2900.
  • Pons, S., T. Asano, E. Glasheen, M. Miralpeix, Y. Zhang, T. L. Fisher, M. G. Myers, Jr., X. J. Sun, and M. F. White. 1995. The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3- kinase. Mol. Cell. Biol. 15:4453–4465.
  • Pronk, G. J., J. McGlade, G. Pelicci, T. Pawson, and J. L. Bos. 1993. Insulin-induced phosphorylation of the 46- and 52-kDa Shc proteins. J. Biol. Chem. 268:5748–5753.
  • Rameh, L. E., C. S. Chen, and L. C. Cantley. 1995. Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Cell 83:821–830.
  • Rordorf-Nikolic, T., D. J. Van Horn, D. Chen, M. F. White, and J. M. Backer. 1995. Regulation of phosphatidylinositol 3-kinase by tyrosyl phosphoproteins. Full activation requires occupancy of both SH2 domains in the 85 kDa regulatory subunit. J. Biol. Chem. 270:3662–3666.
  • Rosen, O. M. 1987. After insulin binds. Science 237:1452–1458.
  • Ruderman, N., R. Kapeller, M. F. White, and L. C. Cantley. 1990. Activation of phosphatidylinositol-3-kinase by insulin. Proc. Natl. Acad. Sci. USA 87:1411–1415.
  • Schu, P. V., T. Kaoru, M. J. Fry, J. H. Stack, M. D. Waterfield, and S. D. Emr. 1993. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91.
  • Shi, P., M. G. Myers, Jr., and M. F. White. 1995. Unpublished data.
  • Shi, P., M. G. Myers, Jr., and M. F. White. 1996. Unpublished data.
  • Skolnik, E. Y., C. H. Lee, A. G. Batzer, L. M. Vicentini, M. Zhou, R. J. Daly, M. G. Myers, Jr., J. M. Backer, A. Ullrich, M. F. White, and J. Schlessinger. 1993. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS-1 and Shc: implications for insulin control of ras signalling. EMBO J. 12:1929–1936.
  • Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. G. Neel, R. B. Birge, J. E. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and J. C. Cantley. 1993. SH2 domains recognized specific phosphopeptide sequences. Cell 72:767–778.
  • Sugimoto, S., T. J. Wandless, S. E. Shoelson, B. G. Neel, and C. T. Walsh. 1994. Activation of the SH2-containing protein tyrosine phosphatase, SH- PTP2, by phosphotyrosine-containing peptides derived from insulin receptor substrate-1. J. Biol. Chem. 269:13614–13622.
  • Sun, X. J., D. L. Crimmins, M. G. Myers, Jr., M. Miralpeix, and M. F. White. 1993. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol. Cell. Biol. 13:7418–7428.
  • Sun, X. J., M. Miralpeix, M. G. Myers, Jr., E. M. Glasheen, J. M. Backer, C. R. Kahn, and M. F. White. 1992. The expression and function of IRS-1 in insulin signal transmission. J. Biol. Chem. 267:22662–22672.
  • Sun, X. J., S. Pons, T. Asano, M. G. Myers, Jr., E. Glasheen, and M. F. White. 1996. The fyn tyrosine kinase binds IRS-1 and forms a distinct signaling complex during insulin stimulation. J. Biol. Chem. 271:10583–10587.
  • Sun, X. J., P. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahill, B. J. Goldstein, and M. F. White. 1991. The structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature (London) 352:73–77.
  • Sun, X. J., L. M. Wang, Y. Zhang, L. P. Yenush, M. G. Myers, Jr., E. Glasheen, W. S. Lane, J. H. Pierce, and M. F. White. 1995. Role of IRS-2 in insulin and cytokine signalling. Nature (London) 377:173–177.
  • Tamemoto, H., T. Kadowaki, K. Tobe, T. Yagi, H. Sakura, T. Hayakawa, Y. Terauchi, K. Ueki, Y. Kaburagi, S. Satoh, H. Sekihara, S. Yoshioka, H. Horikoshi, Y. Furuta, Y. Ikawa, M. Kasuga, Y. Yazaki, and S. Aizawa. 1994. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature (London) 372:182–186.
  • Toker, A., M. Meyer, K. Reddy, J. R. Falck, R. Aneja, S. Aneja, A. Parra, D. J. Burns, L. M. Ballas, and L. C. Cantley, Jr. 1994. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P3. J. Biol. Chem. 269:32358–32367.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Uddin, S., S. Katzav, M. F. White, and L. C. Platanias. 1995. Insulindependent tyrosine phosphorylation of the vav proto-oncogene product in cells of hematopoietic origin. J. Biol. Chem. 270:7712–7716.
  • Uddin, S., L. P. Yenush, X. J. Sun, M. E. Sweet, M. F. White, and L. C. Platanias. 1995. Interferon-alpha engages IRS-signaling proteins to regulate the phosphatidylinositol 3-kinase. J. Biol. Chem. 270:15938–15941.
  • Wang, L. M., M. G. Myers, Jr., X. J. Sun, S. A. Aaronson, M. F. White, and J. H. Pierce. 1993. IRS-1: essential for insulin and IL-4-stimulated mitogen- esis in hematopoietic cells. Science 261:1591–1594.
  • White, M. F., and J. M. Backer. 1991. Preparation and use of antiphosphotyrosine antibodies to study structure and function of insulin receptors. Methods Enzymol. 201:65–79.
  • White, M. F., R. Maron, and C. R. Kahn. 1985. Insulin rapidly stimulates tyrosine phosphorylation of a Mr 185,000 protein in intact cells. Nature (London) 318:183–186.
  • Yenush, L., R. Fernandez, M. G. Myers, Jr., T. C. Grammer, X. J. Sun, J. Blenis, J. H. Pierce, J. Schlessinger, and M. F. White. 1996. The Drosophila insulin receptor activates multiple signaling pathways but requires insulin receptor substrate proteins for DNA synthesis. Mol. Cell. Biol. 16:2509–2517.
  • Yenush, L., and M. F. White. 1995. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.