28
Views
187
CrossRef citations to date
0
Altmetric
Research Article

Functional Interaction of Cytosolic hsp70 and a DnaJ-Related Protein, Ydj1p, in Protein Translocation In Vivo

, , &
Pages 4378-4386 | Received 05 Feb 1996, Accepted 02 May 1996, Published online: 29 Mar 2023

REFERENCES

  • Altman, E., C. A. Kumamoto, and S. D. Emr. 1991. Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J. 10:239–245.
  • Atencio, D., and M. Yaffe. 1992. MAS5, a yeast homolog of DnaJ involved in mitochondrial import. Mol. Cell. Biol. 12:283–291.
  • Blond-Elguindi, S., S. Cwirla, W. Dower, R. Lipshutz, S. Sprang, J. Sambrook, and M.-J. Gething. 1993. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728.
  • Boorstein, W. R., T. Ziegelhoffer, and E. A. Craig. 1994. Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38:1–17.
  • Buchberger, A., H. Schroder, M. Buttner, A. Valencia, and B. Bukau. 1994. A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE. Struct. Biol. 1:95–101.
  • Caplan, A., D. Cyr, and M. Douglas. 1992. YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 71:1143–1155.
  • Caplan, A., and M. Douglas. 1991. Characterization of YDJ1: a yeast homologue of the bacterial dnaJ protein. J. Cell Biol. 114:609–621.
  • Caplan, A., J. Tsai, P. Casey, and M. Douglas. 1992. Farnesylation of YDJ1p is required for function at elevated growth temperatures in S. cerevisiae. J. Biol. Chem. 267:18890–18895.
  • Caplan, A. J., D. M. Cyr, and M. G. Douglas. 1993. Eukaryotic homologues of Escherichia coli dnaJ: a diverse protein family that functions with HSP70 stress proteins. Mol. Biol. Cell 4:555–563.
  • Chappell, T. G., B. B. Konforti, S. L. Schmid, and J. E. Rothman. 1987. The ATPase core of a clathrin uncoating protein. J. Biol. Chem. 262:746–751.
  • Chappell, T. G., W. J. Welch, D. M. Schlossman, K. B. Palter, M. J. Schlesinger, and J. E. Rothman. 1986. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45:3–13.
  • Chirico, W., M. G. Waters, and G. Blobel. 1988. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature (London) 332:805–810.
  • Chirico, W. J. 1992. Dissociation of complexes between 70 kDa stress proteins and presecretory proteins is faciliated by a cytosolic factor. Biochem. Biophys. Res. Commun. 189:1150–1156.
  • Conibear, E., and T. Stevens. 1995. Vacuolar biogenesis in yeast: sorting out the sorting proteins. Cell 83:513–516.
  • Craig, E. A., B. D. Gambill, and R. J. Nelson. 1993. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57:402–414.
  • Craig, E. A., and C. A. Gross. 1991. Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16:135–140.
  • Craig, E. A., and K. Jacobsen. 1985. Mutations in cognate gene of Saccha- romyces cerevisiae HSP70 result in reduced growth rates at low temperatures. Mol. Cell. Biol. 5:3517–3524.
  • Craig, E. A., and W. Walter. Unpublished data.
  • Craig, E. A., T. Ziegelhoffer, J. Nelson, S. Laloraya, and J. Halladay. 1995. Complex multigene family of functionally distinct Hsp70s of yeast. Cold Spring Harbor Symp. Quant. Biol. 60:441–449.
  • Cyr, D., X. Lu, and M. Douglas. 1992. Regulation of Hsp70 function by a eukaryotic DnaJ homolog. J. Biol. Chem. 267:20927–20931.
  • Deshaies, R., B. Koch, M. Werner-Washburne, E. Craig, and R. Schekman. 1988. A subfamily of stress proteins faciliates translocation of secretory and mitochondrial precursor polypeptides. Nature (London) 332:800–805.
  • Deshaies, R. J., and R. Schekman. 1989. SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. J. Cell Biol. 109:2653–2664.
  • Felici, F., G. Cesareni, and J. Hughes. 1989. The most abundant small cytoplasmic RNA of Saccharomyces cerevisiae has an important function required for normal cell growth. Mol. Cell. Biol. 9:3260–3268.
  • Flaherty, K. M., C. DeLuca-Flaherty, and D. B. McKay. 1990. Three dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature (London) 346:623–628.
  • Flynn, G., J. Pohl, M. Flocco, and J. Rothman. 1991. Peptide-binding spec- ificity of the molecular chaperone BiP. Nature (London) 353:726–730.
  • Freeman, B., M. Myers, R. Schumacher, and R. Morimoto. 1995. Identification of a regulatory motif in Hsp70 that affects ATPasae activity, substrate binding and interaction with HDJ-1. EMBO J. 14:2281–2292.
  • Gamer, J., H. Bujard, and B. Bukau. 1992. Physical interaction between heat shock proteins DnaK, DnaJ and GrpE and the bacterial heat shock transcription factor sigma32. Cell 69:833–842.
  • Gao, B., J. Biosca, E. A. Craig, L. E. Greene, and E. Eisenberg. 1991. Uncoating of coated vesicles by yeast hsp70 proteins. J. Biol. Chem. 266:19565–19571.
  • Georgopoulos, C., and W. Welch. 1993. Roles of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9:601–634.
  • Gething, M.-J., and J. Sambrook. 1992. Protein folding in the cell. Nature (London) 355:33–45.
  • Hann, B. C., and P. Walter. 1991. The signal recognition particle in S. cerevisiae. Cell 67:131–144.
  • Hansen, W., P. D. Garcia, and P. Walter. 1986. In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of prepro-a-factor. Cell 45:397–406.
  • Hemmings, B. A., G. S. Zubenko, A. Hasilik, and E. W. Jones. 1981. Mutant defective in processing of an enzyme located in the lysosome-like vacuole of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:435–439.
  • Hendrick, J., and F.-U. Hartl. 1993. Molecular chaperone function of heatshock proteins. Annu. Rev. Biochem. 62:349–384.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Julius, D., R. Schekman, and J. Thorner. 1984. Glycosylation and processing of prepro-alpha factor through the yeast secretory pathway. Cell 36:309–318.
  • Kaiser, C., and R. Schekman. 1990. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61:723–733.
  • Kang, P. J., J. Ostermann, J. Shilling, W. Neupert, E. A. Craig, and N. Pfanner. 1990. Hsp70 in the mitochondrial matrix is required for translocation and folding of precursor proteins. Nature (London) 348:137–143.
  • Klionsky, D. J., L. M. Banta, and S. D. Emr. 1988. Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol. Cell. Biol. 8:2105–2116.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Laloraya, S., and E. A. Craig. Unpublished results.
  • Langer, T., C. Lu, H. Echols, J. Flanagan, M. K. Hayer, and F. U. Hartl. 1992. Successive action of DnaK, DnaJ, and GroEL along the pathway of chaperone-mediated protein folding. Nature (London) 356:683–689.
  • Liberek, K., J. Marszalek, D. Ang, and C. Georgopoulos. 1991. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88:2874–2878.
  • Lindquist, S., and E. A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631–677.
  • Luke, M., A. Suttin, and K. Arndt. 1991. Characterization of SIS1, a Sac- charomyces cerevisiae homologue of bacterial dnaJ proteins. J. Cell Biol. 114:623–638.
  • McCarty, J., A. Buchberger, J. Reinstein, and B. Bukau. 1995. The role of ATP in the functional cycle of the DnaK chaperone system. J. Mol. Biol. 249:126–137.
  • Murakami, H., D. Pain, and G. Blobel. 1988. 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J. Cell Biol. 107:2051–2057.
  • Nelson, R. J., T. Ziegelhoffer, C. Nicolet, M. Werner-Washburne, and E. A. Craig. 1992. The translation machinery and seventy kilodalton heat shock protein cooperate in protein synthesis. Cell 71:97–105.
  • Palleros, D. R., K. L. Reid, L. Shi, W. Welch, and A. L. Fink. 1993. ATP- induced protein-hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature (London) 365:664–666.
  • Panzer, S., L. Dreier, E. Hartmann, S. Kostka, and T. Rapoport. 1995. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561–570.
  • Reid, G. A., T. Yonetani, and G. Schatz. 1982. Import of proteins into mitochondria: import and maturation of the mitochondrial intermembrane space enzymes cytochrome b2 and cytochrome c peroxidase in intact yeast cells. J. Biol. Chem. 257:13068–13074.
  • Rothman, J. 1989. Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59:591–601.
  • Sambrook, J. E., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanders, S., K. Whitfield, J. Vogel, M. Rose, and R. Schekman. 1992. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69:353–366.
  • Schleyer, M., B. Schmidt, and W. Neupert. 1982. Requirement of a membrane potential for the posttranslational transfer of protein into mitochondria. Eur. J. Biochem. 125:109–116.
  • Schmid, D., A. Baici, H. Gehring, and P. Christen. 1994. Kinetics of molecular chaperone action. Science 263:971–973.
  • Schroder, H., T. Langer, F.-U. Hartl, and B. Bukau. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12:4137–4144.
  • Seeger, M., and G. Payne. 1992. Golgi membrane protein retention in Sac- charomyces cerevisiae. J. Cell Biol. 118:531–540.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Stevens, T., B. Esmon, and R. Schekman. 1982. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell 30:439–448.
  • Stone, D. E., and E. A. Craig. 1990. Self regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:1622–1632.
  • van den Hazel, H. B., M. C. Kielland-Brandt, and J. R. Winther. 1992. The propeptide is required for in vivo formation of stable active yeast proteinase A and can function even when not covalently linked to the mature region. J. Biol. Chem. 268:18002–18007.
  • Verner, K. 1993. Co-translational import into mitochondria: an alternative view. Trends Biochem. Sci. 18:366–371.
  • Vogel, J. P., L. M. Misra, and M. D. Rose. 1990. Loss of BiP/grp78 function blocks translocation of secretory proteins in yeast. J. Cell Biol. 110:1885–1895.
  • Wang, T.-F., J.-H. Chang, and C. Wang. 1993. Identification of the peptide binding domain of hsc70. J. Biol. Chem. 268:26049–26051.
  • Waters, M. G., and G. Blobel. 1986. Secretory protein translocation in a yeast cell-free system can occur post-translationally and requires ATP hydrolysis. J. Cell Biol. 102:1543–1550.
  • Werner-Washburne, M., D. E. Stone, and E. A. Craig. 1987. Complex interactions among members of an essential subfamily of hsp70 genes in Saccha- romyces cerevisiae. Mol. Cell. Biol. 7:2568–2577.
  • Wild, J., E. Altman, T. Yura, and C. A. Gross. 1992. The DnaK and DnaJ heat shock proteins participate in protein export in E. coli. Genes Dev. 6:1165–1172.
  • Zhong, T., and K. T. Arndt. 1993. The yeast SIS1 protein, a DnaJ homolog, is required for initiation of translation. Cell 73:1175–1186.
  • Ziegelhoffer, T., P. Lopez-Buesa, and E. A. Craig. 1995. The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates. J. Biol. Chem. 270:10412–10419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.