2
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Selective Utilization of Basic Helix-Loop-Helix–Leucine Zipper Proteins at the Immunoglobulin Heavy-Chain Enhancer

, &
Pages 18-23 | Received 10 Jul 1996, Accepted 02 Oct 1996, Published online: 29 Mar 2023

REFERENCES

  • Amin, C., A. J. Wagner, and N. Hay. 1993. Sequence-specific transcriptional activation by Myc and repression by Max. Mol. Cell. Biol. 13:383–390.
  • Artandi, S. E., C. Cooper, A. Shrivastava, and K. Calame. 1994. The basic helix-loop-helix-zipper domain of TFE3 mediates enhancer-promoter interaction. Mol. Cell. Biol. 14:7704–7716.
  • Artandi, S. E., K. Merrell, N. Avitahl, K. K. Wong, and K. Calame. 1995. TFE3 contains two activation domains, one acidic and the other proline-rich, that synergistically activate transcription. Nucleic Acids Res. 23:3865–3871.
  • Bain, G., E. C. R. Maandag, D. J. Izon, D. Amsen, A. M. Kruisdeek, B. C. Weintraub, I. Krop, M. S. Schlissel, A. J. Feeney, M. van Roon, M. van der Valk, H. P. J. te Riele, A. Berns, and C. Murre. 1994. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–892.
  • Beckmann, H., and T. Kadesch. 1991. The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity. Genes Dev. 5:1057–1066.
  • Beckmann, H., L. K. Su, and T. Kadesch. 1990. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev. 4:167–179.
  • Blackwood, E. M., and R. N. Eisenman. 1991. Max: a helix-loop-helix zipper protein that forms a sequence specific DNA-binding complex with myc. Science 251:1211–1217.
  • Blackwood, E. M., L. Kretzner, and R. N. Eisenman. 1992. Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dev. 2:227–235.
  • Calame, K. L. 1989. Immunoglobulin gene transcription: molecular mechanisms. Trends Genet. 5:395–399.
  • Carr, C., and P. A. Sharp. 1990. A helix-loop-helix protein related to the immunoglobulin E-box-binding proteins. Mol. Cell. Biol. 10:4384–4388.
  • Chang, L. A., T. Smith, P. Pognonec, R. G. Roeder, and H. Murialdo. 1992. Identification of USF as the ubiquitous murine factor that binds to and stimulates transcription from the immunoglobulin lambda 2-chain promoter. Nucleic Acids Res. 20:287–293.
  • Choi, J. K., C.-P. Shen, H. S. Radomska, L. A. Eckhardt, and T. Kadesch. 1996. E47-mediated activation of the Ig-heavy chain and TdT loci in non-B-cells. EMBO J. 15:5014–5021.
  • Dalton, S., and R. Treisman. 1994. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 76:411.
  • Desbarates, L., S. Gaubatz, and M. Eilers. 1996. Discrimination between different E-box-binding proteins at an endogenous target of c-myc. Genes Dev. 10:447–460.
  • de Wet, J. R., K. V. Wood, M. DeLuca, D. R. Helinski, and S. Subramani. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7:725–737.
  • Du, H., A. L. Roy, and R. G. Roeder. 1993. Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO J. 12:501–511.
  • Eckhardt, L. A. 1992. Immunoglobulin gene expression only in the right cells and at right time. FASEB J. 6:2553–2560.
  • Genetta, T., D. Ruezinsky, and T. Kadesch. 1994. Displacement ofan E-boxbinding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Mol. Cell. Biol. 14:6153–6163.
  • Graham, F. L., and A. J. van der Eb. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467.
  • Gregor, P. D., M. Sawadogo, and R. G. Roeder. 1990. The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev. 4:1730–1740.
  • Hemesath, T. J., E. Steingrimsson, G. McGill, M. J. Hansen, J. Vaught, C. A. Hodgkinson, H. Arnheiter, N. G. Copeland, N. A. Jenkins, and D. E. Fisher. 1994. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 8:2770–2780.
  • Henthorn, P., M. Kiledjian, and T. Kadesch. 1990. Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science 247:467–470.
  • Hu, J.-S., E. N. Olson, and R. E. Kingston. 1992. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenia regulatory factors. Mol. Cell. Biol. 12:1031–1042.
  • Kadesch, T. 1992. Helix-loop-helix proteins in the regulation of immunoglobulin gene transcription. Immunol. Today 13:31–36.
  • Kiledjian, M., L. K. Su, and T. Kadesch. 1988. Identification and characterization of two functional domains within the murine heavy-chain enhancer. Mol. Cell. Biol. 8:145–152.
  • Kretzner, L., E. M. Blackwood, and R. N. Eisenman. 1992. Myc and Max proteins possess distinct transcriptional activities. Nature 359:426–429.
  • Kretzner, L., E. M. Blackwood, and R. N. Eisenman. 1992. Transcriptional activities of the Myc and Max proteins in mammalian cells. Curr. Top. Microbiol. Immunol. 182:435–443.
  • Lassar, A. B., R. L. Davis, W. E. Wright, T. Kadesch, C. Murre, A. Voronova, D. Baltimore, and H. Weintraub. 1991. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66:305–315.
  • Lefrancois-Martinez, A. M., A. Martinez, B. Antoine, M. Raymondjean, and A. Kahn. 1995. Upstream stimulatory factor proteins are major components of the glucose response complex of the L-type pyruvate kinase gene promoter. J. Biol. Chem. 270:2640–2643.
  • Lenardo, M., J. W. Pierce, and D. Baltimore. 1987. Protein-binding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science 236:1573–1577.
  • Meier, J. L., X. Luo, M. Sawadogo, and S. E. Straus. 1994. The cellular transcription factor USF cooperates with varicella-zoster virus immediate-early protein 62 to symmetrically activate a bidirectional viral promoter. Mol. Cell. Biol. 14:6896–6906.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.
  • Murre, C., A. Voronova, and D. Baltimore. 1991. B-cell- and myocyte-specific E2-box-binding factors contain E12/E47-like subunits. Mol. Cell. Biol. 11:1156–1160.
  • Ruezinsky, D., H. Beckmann, and T. Kadesch. 1991. Modulation of the IgH enhancer’s cell type specificity through a genetic switch. Genes Dev. 5:29–37.
  • Shen, C. P., and T. Kadesch. 1995. B-cell-specific DNA binding by an E47 homodimer. Mol. Cell. Biol. 15:4518–4524.
  • Sirito, M., Q. Lin, T. Maity, and M. Sawadogo. 1994. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res. 22:427–433.
  • Viollet, B., A.-M. Lefrancois-Martinez, A. Henrion, A. Kahn, M. Raymondjean, and A. Martinez. 1996. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms. J. Biol. Chem. 271:1405–1415.
  • Zhuang, Y., P. Soriano, and H. Weintraub. 1994. The helix-loop-helix gene E2A is required for B cell formation. Cell 79:875–884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.