30
Views
144
CrossRef citations to date
0
Altmetric
Research Article

Rat1p and Xrn1p Are Functionally Interchangeable Exoribonucleases That Are Restricted to and Required in the Nucleus and Cytoplasm, Respectively

Pages 6122-6130 | Received 04 Mar 1997, Accepted 21 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Aldrich, T. L., G. Di Segni, B. L. McConaughy, N. J. Keen, S. Whelen, and B. D. Hall. 1993. Structure of the yeast TAP1 protein: dependence of transcription activation on the DNA context of the target gene. Mol. Cell. Biol. 13:3434–3444.
  • Amberg, D. C., and C. N. Cole. Unpublished data.
  • Amberg, D. C., L. A. Goldstein, and C. N. Cole. 1992. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6:1173–1189.
  • Bashkirov, V. I., H. Scherthan, J. A. Solinger, J.-M. Buerstedde, and W.-D. Heyer. A mouse exoribonuclease (mXRN1p) with a preference for G4 tetraplex substrates. J. Cell Biol., in press.
  • Beelman, C. A., and R. Parker. 1995. Degradation of mRNA in eukaryotes. Cell 81:179–183.
  • Belasco, J. 1993. mRNA degradation in prokaryotic cells: an overview, p. 3–12. In J. Belasco and G. Brawerman (ed.), Control of messenger RNA stability. Academic Press, San Diego, Calif.
  • Caponigro, G., and R. Parker. 1995. Multiple functions for the poly(A)- binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 9:2421–2432.
  • Chapman, K. B., and J. D. Boeke. 1991. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65:483–492.
  • Cormack, B. P., R. H. Valdivia, and S. Falkow. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38.
  • Decker, C. J., and R. Parker. 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7:1632–1643.
  • Decker, C. J., and R. Parker. 1994. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem. Sci. 19:336–340.
  • Dingwall, C., and R. A. Laskey. 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478–481.
  • Di Segni, G., B. L. McConaughy, R. A. Shapiro, T. L. Aldrich, and B. D. Hall. 1993. TAP1, a yeast gene that activates the expression of a tRNA gene with a defective internal promoter. Mol. Cell. Biol. 13:3424–3433.
  • Dykstra, C. C., R. K. Hamatake, and A. Sugino. 1990. DNA strand transfer protein þ from yeast mitotic cells differs from strand transfer protein a from meiotic cells. J. Biol. Chem. 265:10968–10973.
  • Fishel, R. Personal communication.
  • Gietz, D., A. St. John, R. A. Woods, and R. H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
  • He, F., S. W. Peltz, J. L. Donahue, M. Rosbash, and A. Jacobson. 1993. Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1-mutant. Proc. Natl. Acad. Sci. USA 90:7034–7038.
  • Henry, Y., H. Wood, J. P. Morrissey, E. Petfalski, S. Kearsey, and D. Tollervey. 1994. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 13:2452–2463.
  • Heyer, W.-D., A. W. Johnson, U. Reinhart, and R. D. Kolodner. 1995. Regulation and intracellular localization of the Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1), a multifunctional exonuclease. Mol. Cell. Biol. 15:2728–2736.
  • Ho, J., and A. Johnson. Unpublished data.
  • Hsu, C. L., and A. Stevens. 1993. Yeast cells lacking 5′33′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13:4826–4835.
  • Interthal, H., C. Bellocq, J. Bahler, V. I. Bashkirov, S. Edelstein, and W.-D. Heyer. 1995. A role of Sep1(=Kem1) as a microtubule-associated protein in Saccharomyces cerevisiae. EMBO J. 14:1057–1066.
  • Johnson, A. W., and R. D. Kolodner. 1991. Strand exchange protein 1 from Saccharomyces cerevisiae. A novel multifunctional protein that contains DNA strand exchange and exonuclease activities. J. Biol. Chem. 266:14046–14054.
  • Johnson, A. W., and R. D. Kolodner. 1995. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell. Biol. 15:2719–2727.
  • Kaiser, C., S. Michaelis, and A. Mitchell. 1994. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Käslin, E. and W.-D. Heyer. 1994. A multifunctional exonuclease from vegetative Schizosaccharomyces pombe cells exhibiting in vitro strand exchange activity. J. Biol. Chem. 269:14094–14102.
  • Kenna, M., A. Stevens, M. McCammon, and M. G. Douglas. 1993. An essential yeast gene with homology to the exonuclease-encoding XRN1/ KEM1 gene also encodes a protein with exoribonuclease activity. Mol. Cell. Biol. 13:341–350.
  • Kim, J. 1988. Genes controlling conjugation and mitotic cell division in the yeast Saccharomyces cerevisiae. Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, Mass.
  • Kim, J., P. O. Ljungdahl, and G. R. Fink. 1990. kem mutations affect nuclear fusion in Saccharomyces cerevisiae. Genetics 126:799–812.
  • Kipling, D., C. Tambini, and S. E. Kearsey. 1991. rar mutations which increase artificial chromosome stability in Saccharomyces cerevisiae identify transcription and recombination proteins. Nucleic Acids Res. 19:1385–1391.
  • Kolodner, R., D. H. Evans, and P. T. Morrison. 1987. Purification and characterization of an activity from Saccharomyces cerevisiae that catalyzes homologous pairing and strand exchange. Proc. Natl. Acad. Sci. USA 84:5560–5564.
  • Kranz, J. E., and C. Holm. 1990. Cloning by function: an alternative approach for identifying yeast homologs of genes from other organisms. Proc. Natl. Acad. Sci. USA 87:6629–6633.
  • Larimer, F. W., C. L. Hsu, M. K. Maupin, and A. Stevens. 1992. Characterization of the XRN1 gene encoding a 5′33′ exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. Gene 120:51–57.
  • Lee, G. S., E. A. Savage, R. G. Ritzel, and R. C. von Borstel. 1988. The base-alteration spectrum of spontaneous and ultraviolet radiation-induced forward mutations in the URA3 locus of Saccharomyces cerevisiae. Mol. Gen. Genet. 214:396–404.
  • Liu, Z., and W. Gilbert. 1994. The yeast KEM1 gene encodes a nuclease specific for G4 tetraplex DNA: implication of in vivo functions for this novel DNA structure. Cell 77:1083–1092.
  • Muhlrad, D., C. J. Decker, and R. Parker. 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′33′ digestion of the transcript. Genes Dev. 8:855–866.
  • Muhlrad, D., and R. Parker. 1994. Premature translational termination triggers mRNA decapping. Nature 370:578–581.
  • Ohtake, Y., and R. B. Wickner. 1995. Yeast virus propogation depends critically on free 60S ribosomal subunit concentration. Mol. Cell. Biol. 15:2772–2781.
  • Poole, T. L., and A. Stevens. 1995. Comparison of features of the RNase activity of 5′-exonuclease-1 and 5′-exonuclease-2 of Saccharomyces cerevisiae. Nucleic Acids Symp. Ser. 33:79–81.
  • Schlenstedt, G. Unpublished data.
  • Shobuike, T., S. Sugano, T. Yamashita, and H. Ikeda. 1995. Characterization of cDNA encoding mouse homolog of fission yeast dhp1+ gene: structural and functional conservation. Nucleic Acids Res. 23:357–361.
  • Stevens, A. 1980. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′33′ mode of hydrolysis. J. Biol. Chem. 255:3080–3085.
  • Stevens, A., C. L. Hsu, K. R. Isham, and F. W. Larimer. 1991. Fragments of the internal transcribed spacer 1 of pre-rRNA accumulate in Saccharomyces cerevisiae lacking 5′33′ exoribonuclease 1. J. Bacteriol. 173:7024–7028.
  • Stevens, A., and T. L. Poole. 1995. 5′-Exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1. J. Biol. Chem. 270:16063–16069.
  • Sugano, S., T. Shobuike, T. Takeda, A. Sugino, and H. Ikeda. 1994. Molecular analysis of the dhp1+ gene of Schizosaccharomyces pombe: an essential gene that has homology to the DST2 and RAT1 genes of Saccharomyces cerevisiae. Mol. Gen. Genet. 243:1–8.
  • Szankasi, P., and G. R. Smith. Unpublished data.
  • Tishkoff, D. X., A. W. Johnson, and R. D. Kolodner. 1991. Molecular and genetic analysis of the gene encoding the Saccharomyces cerevisiae strand exchange protein Sep1. Mol. Cell. Biol. 11:2593–2608.
  • Tishkoff, D. X., B. Rockmill, G. S. Roeder, and R. D. Kolodner. 1995. The sep1 mutant of Saccharomyces cerevisiae arrests in pachytene and is deficient in meiotic recombination. Genetics 139:495–509.
  • Toone, W. M., A. L. Johnson, G. R. Banks, J. H. Toyn, D. Stuart, C. Wittenberg, and L. H. Johnston. 1995. Rme1, a negative regulator of meiosis, is also a positive activator of G1 cyclin gene expression. EMBO J. 14:5824–5832.
  • Widner, W. R., and R. B. Wickner. 1993. Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA. Mol. Cell. Biol. 13:4331–4341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.