7
Views
43
CrossRef citations to date
0
Altmetric
Research Article

Elimination of Defective α-Factor Pheromone Receptors

, , &
Pages 6236-6245 | Received 27 Feb 1997, Accepted 11 Aug 1997, Published online: 29 Mar 2023

REFERENCES

  • Abeijon, C., P. Orlean, P. W. Robbins, and C. B. Hirschberg. 1989. Topography of glycosylation in yeast: characterization of GDP-mannose transport and lumenal guanosine diphosphatase activities in Golgi-like vesicles. Proc. Natl. Acad. Sci. USA 86:6935–6939.
  • Aris, J. P., and G. Blobel. 1988. Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J. Cell Biol. 107:17–31.
  • Baba, M., K. Takeshige, N. Baba, and Y. Ohsumi. 1994. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124:903–913.
  • Bardwell, L., J. G. Cook, C. J. Inouye, and J. Thorner. 1994. Signal propagation and regulation in the mating pheromone response pathway of the yeast Saccharomyces cerevisiae. Dev. Biol. 166:363–379.
  • Benito, B., E. Riballo, and R. Lagunas. 1991. Turnover of the K1 transport system in Saccharomyces cerevisiae. FEBS Lett. 294:35–37.
  • Bergeron, J. J. M., M. B. Brenner, D. Y. Thomas, and D. B. Williams. 1994. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19:124–128.
  • Berkower, C., D. Loayza, and S. Michaelis. 1994. Metabolic instability and constitutive endocytosis of STE6, the a-factor transporter of Saccharomyces cerevisiae. Mol. Biol. Cell 5:1185–1198.
  • Biederer, T., C. Volkwein, and T. Sommer. 1996. Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J. 15:2069–2076.
  • Blumer, K. J., J. E. Reneke, and J. Thorner. 1988. The STE2 gene product is the ligand-binding component of the a-factor receptor of Saccharomyces cerevisiae. J. Biol. Chem. 263:10836–10842.
  • Burkholder, A. C., and L. H. Hartwell. 1985. The yeast a-factor receptor: structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res. 13:8463–8475.
  • Cartwright, C. P., Y. Li, Y.-S. Zhu, Y.-S. Kang, and D. J. Tipper. 1994. Use of b-lactamase as a secreted reporter of promoter function in yeast. Yeast 10:497–508.
  • Cartwright, C. P., and D. J. Tipper. 1991. In vivo topological analysis of Ste2,a yeast plasma membrane protein, by using b-lactamase gene fusions. Mol. Cell. Biol. 11:2620–2628.
  • Chang, A., and G. R. Fink. 1995. Targeting of the yeast plasma membrane [H1]ATPase: a novel gene AST1 prevents mislocalization of mutant ATPase to the vacuole. J. Cell. Biol. 128:39–49.
  • Chau, V., J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker, D. K. Gonda, and A. Varshavsky. 1989. A multiubiquitin chain is confined to a specific lysine in a targeted short-lived protein. Science 243:1576–1583.
  • Chiang, H. L., R. Schekman, and S. Hamamoto. 1996. Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J. Biol. Chem. 271:9934–9941.
  • Clark, K. L., N. G. Davis, D. K. Wiest, J.-J. Hwang-Shum, and G. F. Sprague, Jr. 1988. Response of yeast a cells to a-factor pheromone: topology of the receptor and identification of a component of the response pathway. Cold Spring Harbor Symp. Quant. Biol. 53:611–620.
  • Davis, N. G., J. L. Horecka, and G. F. Sprague, Jr. 1993. cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122:53–65.
  • Egner, R., and K. Kuchler. 1996. The yeast multidrug transporter Pdr5 of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole. FEBS Lett. 378:177–181.
  • Finley, D., S. Sadis, B. P. Monia, P. Boucher, D. J. Ecker, S. T. Crooke, and V. Chau. 1994. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell. Biol. 14:5501–5509.
  • Galan, J. M., V. Moreau, B. Andre, C. Volland, and R. Haguenauer-Tsapis. 1996. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271:10946–10952.
  • Galchevagargova, Z., S. J. Theroux, and R. J. Davis. 1995. The epidermal growth factor receptor is covalently linked to ubiquitin. Oncogene 11:2649–2655.
  • Harding, T. M., A. Hefner-Gravink, M. Thumm, and D. J. Klionsky. 1996. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J. Biol. Chem. 271:17621–17624.
  • Hartwell, L. H. 1967. Macromolecule synthesis in temperature-sensitive mutants of yeast. J. Bacteriol. 93:1662–1670.
  • Hartwell, L. H. 1980. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85:811–822.
  • Hicke, L., and H. Riezman. 1996. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287.
  • Hiller, M. M., A. Finger, M. Schweiger, and D. H. Wolf. 1996. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273:1725–1728.
  • Hirschman, J., G. DeZutter, W. Simonds, and D. D. Jenness. 1997. The Gbg complex of the yeast pheromone response pathway: subcellular fractionation and protein-protein interaction. J. Biol. Chem. 272:240–248.
  • Hoffman, M., and H. L. Chiang. 1996. Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 143:1555–1566.
  • Hong, E., A. R. Davidson, and C. A. Kaiser. 1996. A pathway for targeting soluble misfolded proteins to the yeast vacuole. J. Cell Biol. 135:623–633.
  • Jeffers, M., G. A. Taylor, K. M. Weidner, S. Omura, and G. F. Vande Woude. 1997. Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 17:799–808.
  • Jenness, D. D., A. C. Burkholder, and L. H. Hartwell. 1983. Binding of a-factor pheromone to yeast a cells: chemical and genetic evidence for an a-factor receptor. Cell 35:521–529.
  • Jenness, D. D., A. C. Burkholder, and L. H. Hartwell. 1986. Binding of a-factor pheromone to yeast a cells: dissociation constant and number of binding sites. Mol. Cell. Biol. 6:318–320.
  • Jenness, D. D., B. S. Goldman, and L. H. Hartwell. 1987. Saccharomyces cerevisiae mutants unresponsive to a-factor pheromone: a-factor binding and extragenic suppression. Mol. Cell. Biol. 7:1311–1319.
  • Jenness, D. D., and P. Spatrick. 1986. Down regulation of the a-factor pheromone receptor in S. cerevisiae. Cell 46:345–353.
  • Jones, E. W. 1984. The synthesis and function of proteases in Saccharomyces: genetic approaches. Annu. Rev. Genet. 18:233–270.
  • Kaiser, C. A., R. E. Gimeno, and D. A. Shaywitz. 1997. Protein secretion, membrane biogenesis, and endocytosis, p. 91–227. In J. R. Pringle, J. R. Broach, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. III. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Klionsky, D. J., R. Cueva, and D. S. Yaver. 1992. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol. 119:287–299.
  • Knop, M., N. Hauser, and D. H. Wolf. 1996. N-glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast 12:1229–1238.
  • Kolling, R., and C. P. Hollenberg. 1994. The ABC-transporter Ste6 accumu-lates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 13:3261–3271.
  • Konopka, J. B., D. D. Jenness, and L. H. Hartwell. 1988. The C-terminus of the S. cerevisiae a-pheromone receptor mediates an adaptive response to pheromone. Cell 54:609–620.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Lai, K., C. P. Bolognese, S. Swift, and P. McGraw. 1995. Regulation of inositol transport in Saccharomyces cerevisiae involves inositol-induced changes in permease stability and endocytic degradation in the vacuole. J. Biol. Chem. 270:2525–2534.
  • Leonhard, K., J. M. Herrmann, R. A. Stuart, G. Mannhaupt, W. Neupert, and T. Langer. 1996. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria. EMBO J. 15:4218–4229.
  • Li, Y., P. Spatrick, and D. D. Jenness. Unpublished data.
  • Manolson, M. F., D. Proteau, R. A. Preston, A. Stenbit, B. T. Roberts, M. A. Hoyt, D. Preuss, J. Mulholland, D. Botstein, and E. W. Jones. 1992. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H1 ATPase. J. Biol. Chem. 267:14294–14303.
  • McCracken, A. A., and J. L. Brodsky. 1996. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132:291–298.
  • Medintz, I., H. Jiang, E. K. Han, W. Cui, and C. A. Michels. 1996. Characterization of the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. J. Bacteriol. 178:2245–2254.
  • Nakayama, N., A. Miyajima, and K. Arai. 1985. Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevi-siae. EMBO J. 4:2643–2648.
  • Ooi, C. E., E. Rabinovich, A. Dancis, J. S. Bonifacino, and R. D. Klausner. 1996. Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J. 15:3515–3523.
  • Parlati, F., M. Domínguez, J. J. M. Bergeron, and D. Y. Thomas. 1995. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270:244–253.
  • Pringle, J. R., A. E. M. Adams, D. G. Drubin, and B. K. Haarer. 1991. Immunofluorescence methods for yeast. Methods Enzymol. 194:565–602.
  • Rohrer, J., H. Benedetti, B. Zanolari, and H. Riezman. 1993. Identification of a novel sequence mediating regulated endocytosis of the G-protein coupled a-pheromone receptor in yeast. Mol. Biol. Cell 4:511–521.
  • Roth, A. F., and N. G. Davis. 1996. Ubiquitination of the yeast a-factor receptor. J. Cell Biol. 134:661–674.
  • Rothman, J. H., C. P. Hunter, L. A. Valls, and T. H. Stevens. 1986. Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. Proc. Natl. Acad. Sci. USA 83:3248–3252.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Sanders, S. L., K. M. Whitfield, J. P. Vogel, M. D. Rose, and R. W. Schekman. 1992. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69:353–365.
  • Schandel, K. A., and D. D. Jenness. 1994. Direct evidence for ligand-induced internalization of the yeast a-factor pheromone receptor. Mol. Cell. Biol. 14:7245–7255.
  • Schultz, J., B. Ferguson, and G. F. Sprague, Jr. 1995. Signal transduction and growth control in yeast. Curr. Opin. Genet. Dev. 5:31–37.
  • Scott, S. V., A. Hefnergravink, K. A. Morano, T. Noda, Y. Ohsumi, and D. J. Klionsky. 1996. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc. Natl. Acad. Sci. USA 93:12304–12308.
  • Seaman, M. N., C. G. Burd, and S. D. Emr. 1996. Receptor signalling and the regulation of endocytic membrane transport. Curr. Opin. Cell Biol. 8:549–556.
  • Seufert, W., and S. Jentsch. 1990. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short lived and abnormal proteins. EMBO J. 9:543–550.
  • Sommer, T., and S. Jentsch. 1993. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365:176–179.
  • Sprague, G. F., Jr., and I. Herskowitz. 1981. Control of yeast cell type by the mating type locus. I. Identification and control of expression of the a-specific gene BAR1. J. Mol. Biol. 153:305–321.
  • Strous, G. J., P. van Kerkhof, R. Govers, A. Ciechanover, and A. L. Schwartz. 1996. The ubiquitin conjugation system is required for ligand-induced en-docytosis and degradation of the growth hormone receptor. EMBO J. 15:3806–3812.
  • Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119:301–311.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Wiertz, E. J. H. J., T. R. Jones, L. Sun, M. Bogyo, H. J. Geuze, and H. L. Ploegh. 1996. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779.
  • Wittenberg, C., and S. I. Reed. 1996. Plugging it in: signaling circuits and the yeast cell cycle. Curr. Opin. Cell Biol. 8:223–230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.