9
Views
158
CrossRef citations to date
0
Altmetric
Research Article

Two Pathways for Removal of Nonhomologous DNA Ends during Double-Strand Break Repair in Saccharomyces cerevisiae

&
Pages 6765-6771 | Received 26 Jun 1997, Accepted 25 Aug 1997, Published online: 29 Mar 2023

REFERENCES

  • Aboussekhra, A., R. Chanet, Z. Zgaga, C. Cassier-Chauvat, M. Heude, and F. Fabre. 1989. RADH, a gene of Saccharomyces cerevisiae encoding a putative helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17:7211–7219.
  • Aboussekhra, A., R. Chanet, A. Adjiri, and F. Fabre. 1992. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA protein. Mol. Cell. Biol. 12:3224–3234.
  • Aguilera, A., and H. L. Klein. 1989. Yeast intrachromosomal recombination: long gene conversion tracts are preferentially associated with reciprocal exchange and require the RAD1 and RAD3 gene products. Genetics 123:683–694.
  • Araki, H., P. A. Ropp, A. L. Ropp, L. H. Johnston, A. Morrison, and A. Sugino. 1992. DNA polymerase II, the probable homolog of mammalian DNA polymerase ε, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae. EMBO J. 11:733–740.
  • Arthur, H. M., and R. G. Lloyd. 1980. Hyper-recombination in uvrD mutants of Escherichia coli K-12. Mol. Gen. Genet. 180:185–191.
  • Bailis, A. M., and S. Maines. 1996. Nucleotide excision repair gene function in short-sequence recombination. J. Bacteriol. 178:2136–2140.
  • Bardwell, A. J., L. Bardwell, A. E. Tomkinson, and E. C. Friedberg. 1994. Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science 265:2082–2085.
  • Bianchi, M., C. DasGupta, and C. M. Radding. 1983. Synapsis and the formation of paranemic joints by E. coli RecA protein. Cell 34:931–939.
  • Bremer, M. C., F. S. Gimble, J. Thorner, and C. L. Smith. 1992. VDE endonuclease cleaves Saccharomyces cerevisiae genomic DNA at a single site: physical mapping of the VMA1 gene. Nucleic Acids Res. 20:5484–5490.
  • Brutlag, D., and A. Kornberg. 1972. A proofreading function for the 3′-59 exonuclease activity in deoxyribonucleic acid polymerases. J. Biol. Chem. 247:241–248.
  • Feinstein, S. I., and K. B. Low. 1986. Hyper-recombining recipient strains in bacterial conjugation. Genetics 113:13–33.
  • Fishman-Lobell, J., and J. E. Haber. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484.
  • Glasunov, A., M. Frankenberg-Schwager, and D. Frankenberg. 1995. Influence of non-homology between recombining DNA sequences on doublestrand break repair in Saccharomyces cerevisiae. Mol. Gen. Genet. 247:55–60.
  • Gonda, D. K., and C. M. Radding. 1983. By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell 34:647–654.
  • Haber, J. E. 1995. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17:609–620.
  • Hastings, P. J., C. McGill, B. Shafer, and J. N. Strathern. 1993. Ends-in vs. ends-out recombination in yeast. Genetics 135:973–980.
  • Holmes, A., and J. E. Haber. Unpublished data.
  • Horii, Z., and A. J. Clark. 1973. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J. Mol. Biol. 80:327–344.
  • Hunter, N., S. R. Chambers, E. J. Louis, and R. H. Borts. 1996. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 15:1726–1733.
  • Ivanov, E. L., and J. E. Haber. 1995. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2245–2251.
  • Ivanov, E. L., N. Sugawara, J. Fishman-Lobell, and J. E. Haber. 1996. Genetic requirements for the single-strand annealing pathway of doublestrand break repair in Saccharomyces cerevisiae. Genetics 142:647–704.
  • Lawrence, C. W., and R. B. Christensen. 1979. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol. 139:866–876.
  • Leung, W.-Y., A. Malkova, and J. E. Haber. 1997. Gene targeting by duplex DNA frequently occurs by assimilation of a single strand that is subject to preferrential correction. Proc. Natl. Acad. Sci. USA 94:6851–6856.
  • Lloyd, R. G. 1983. lexA dependent recombination in uvrD strains of Escherichia coli. Mol. Gen. Genet. 189:157–161.
  • Lydall, D., and T. Weinert. 1995. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270:1488–1491.
  • Mendonca, V. M., K. Kaiser-Rogers, and S. W. Matson. 1993. Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli. J. Bacteriol. 175:4641–4651.
  • Mendonca, V. M., H. D. Klepin, and S. W. Matson. 1993. DNA helicases in recombination and repair: construction of a DuvrD DhelD DrecQ mutant deficient in recombination and repair. J. Bacteriol. 177:1326–1335.
  • Milne, G. T., T. Ho, and D. T. Weaver. 1995. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139:1189–1199.
  • Morel, P., J. A. Hejna, S. D. Ehrlich, and E. Cassuto. 1993. Antipairing and strand transferase activities of E. coli helicase II (UvrD). Nucleic Acids Res. 21:3205–3209.
  • Morrison, A., J. B. Bell, T. A. Kunkel, and A. Sugino. 1991. Eukaryotic DNA polymerase amino acid sequence required for 3′-5′ exonuclease activity. Proc. Natl. Acad. Sci. USA 88:9473–9477.
  • Morrison, A., A. L. Johnson, L. H. Johnston, and A. Sugino. 1993. Pathway correcting DNA replication error in Saccharomyces cerevisiae. EMBO J. 12:1467–1473.
  • Morrison, A., and A. Sugino. 1994. The 3′-5′ exonucleases of both DNA polymerase d and ε participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol. Gen. Genet. 242:289–296.
  • Nelson, H. H., D. B. Sweetser, and J. A. Nickoloff. 1996. Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality. Mol. Cell. Biol. 16:2951–2957.
  • Plessis, A., A. Perrin, J. E. Haber, and B. Dujon. 1992. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451–460.
  • Prado, F., and A. Aguilera. 1995. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes. Genetics 139:109–123.
  • Priebe, S. D., J. Westmoreland, T. Nilsson-Tillgren, and M. A. Resnick. 1994. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair. Mol. Cell. Biol. 14:4802–4814.
  • Ray, B. L., C. I. White, and J. E. Haber. 1991. Heteroduplex formation and mismatch repair of the “stuck” mutation during mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:5372–5380.
  • Rong, L., F. Palladino, A. Aguilera, and H. L. Klein. 1991. The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127:75–85.
  • Rong, L., and H. L. Klein. 1993. Purification and characterization of the Srs2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268:1252–1259.
  • Rothstein, R. 1983. One step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Rudin, N., and J. E. Haber. 1988. Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8:3918–3928.
  • Sandell, L. L., and V. A. Zakian. 1993. Loss of a telomere: arrest, recovery, and chromosome loss. Cell 75:729–739.
  • Saparbaev, M., L. Prakash, and S. Prakash. 1996. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142:727–736.
  • Schild, D. 1995. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in SRS2 or CCR4, or mating type heterozygosity. Genetics 140:115–127.
  • Selva, E. M., L. New, G. F. Crouse, and R. S. Lahue. 1995. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139:1175–1188.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Strathern, J. N., A. J. Klar, J. B. Hicks, J. A. Abraham, J. M. Ivy, K. A. Nasmyth, and C. McGill. 1982. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31:183–192.
  • Sugawara, N., and J. E. Haber. 1992. Characterization of double-strand break-induced recombination: homology requirements and single-strand DNA formation. Mol. Cell. Biol. 12:563–575.
  • Sugawara, N., E. L. Ivanov, J. Fishman-Lobell, B. L. Ray, X. Wu, and J. E. Haber. 1995. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373:84–86.
  • Sugawara, N., F. Paques, M. Colaiacovo, and J. E. Haber. 1997. Role of Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc. Natl. Acad. Sci. USA 94:9214–9219.
  • Sun, H., D. Treco, N. P. Schultes, and J. W. Szostak. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90.
  • Sun, H., D. Treco, and J. W. Szostak. 1991. Extensive 3′-overhanging, singlestranded DNA associated with meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161.
  • Sung, P., P. Reynolds, L. Prakash, and S. Prakash. 1993. Purification and characterization of the Saccharomyces cerevisiae Rad1/Rad10 endonuclease. J. Biol. Chem. 268:26391–26399.
  • Sung, P. 1994. Catalysis of ATP dependent homologous DNA pairing and strand exchange by yeast Rad51 protein. Science 265:1241–1243.
  • Sung, P., and D. L. Robberson. 1995. DNA strand exchange mediated by a Rad51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453–461.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Tomkinson, A. E., A. J. Bardwell, L. Bardwell, N. J. Tappe, and E. C. Friedberg. 1993. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature 362:860–862.
  • Washburn, B. K., and S. R. Kushner. 1991. Construction and analysis of deletions in the structural gene (uvrD) for DNA helicase II of Escherichia coli. J. Bacteriol. 178:2569–2575.
  • Whitby, M. C., L. Ryder, and R. G. Lloyd. 1993. Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Cell 75:341–350.
  • White, C. I., and J. E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:663–674.
  • Wu, A. M., R. Kahn, C. DasGupta, and C. M. Radding. 1982. Formation of nascent heteroduplex by RecA protein and DNA. Cell 30:37–44.
  • Wu, A. M., M. Bianchi, C. DasGupta, and C. M. Radding. 1983. Unwinding associated with synapsis of DNA molecules by RecA protein. Proc. Natl. Acad. Sci. USA 80:1256–1260.
  • Wu, T. C., and M. Lichten. 1994. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.