16
Views
112
CrossRef citations to date
0
Altmetric
Research Article

Cdc73p and Paf1p Are Found in a Novel RNA Polymerase II-Containing Complex Distinct from the Srbp-Containing Holoenzyme

, , , , , , & show all
Pages 1160-1169 | Received 30 Aug 1996, Accepted 27 Nov 1996, Published online: 29 Mar 2023

REFERENCES

  • Aguilera, A., and H. L. Klein. 1990. HPR1, a novel yeast gene that prevents intrachromosomal excision recombination, shows carboxyl-terminal homol-ogy to the Saccharomyces cerevisiae TOP1 gene. Mol. Cell. Biol. 10:1439–1451.
  • Allison, L. A., M. Moyle, M. Shales, and C. J. Ingles. 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42:599–610.
  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and M. Ptashne. 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Barlev, N. A., R. Candau, L. Wang, P. Darpino, N. Silverman, and S. L. Berger. 1995. Characterization of physical interactions of the putative tran-scriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270:19337–19344.
  • Bengal, E., O. Flores, A. Krauskopf, D. Reinberg, and Y. Aloni. 1991. Role of the mammalian transcription factors IIF, IIS and IIX during elongation by RNA polymerase II. Mol. Cell. Biol. 11:1195–1206.
  • Brou, C., S. Chaudhary, I. Davidson, Y. Lutz, J. Wu, J.-M. Egly, L. Tora, and P. Chambon. 1993. Distinct TFIID complexes mediate the effect of different transcriptional activators. EMBO J. 12:489–499.
  • Buratowski, S. 1994. The basics of basal transcription by RNA polymerase II. Cell 77:1–3.
  • Chang, M., and J. A. Jaehning. Unpublished data.
  • Chao, D. M., E. L. Gadbois, P. J. Murray, S. F. Anderson, M. S. Sonu, J. D. Parvin, and R. A. Young. 1996. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 380:82–85.
  • Chen, J.-L., L. D. Attardi, C. P. Verrijzer, K. Yokomori, and R. Tjian. 1994. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79:93–105.
  • Collart, M. A., and K. Struhl. 1994. NOT1/CDC39, NOT2/CDC36, NOT3 and NOT4 encode a global-negative regulator of transcription that differentially affect TATA-element utilization. Genes Dev. 8:525–537.
  • Conaway, R. C., and J. W. Conaway. 1993. General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62:161–190.
  • Denis, C. L., M. P. Draper, H. Y. Liu, T. Malvar, R. C. Vallari, and W. J. Cook. 1994. The yeast CCR4 protein is neither regulated by nor associated with the SPT6 and SPT10 proteins and forms a functionally distinct complex from that of the SNF/SWI transcription factors. Genetics 138:1005–1013.
  • Dujon, B. et al. Unpublished data.
  • Elder, R. T., E. Y. Loh, and R. W. Davis. 1983. RNA from the yeast trans-posable element Ty1 has both ends in the direct repeats, a structure similarto retrovirus RNA. Proc. Natl. Acad. Sci. USA 80:2432–2436.
  • Fan, H.-Y., and H. L. Klein. 1994. Characterization of mutations that suppress the temperature-sensitive growth of the hpr1A mutant of Saccharomyces cerevisiae. Genetics 137:945–956.
  • Fan, H.-Y., K. K. Cheng, and H. L. Klein. 1996. Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1Δ of Saccharomyces cerevisiae. Genetics 142:749–759.
  • Fassler, J. S., and F. Winston. 1989. The Saccharomyces cerevisiae SPT13/ GAL11 gene has both positive and negative regulatory roles in transcription. Mol. Cell. Biol. 9:5602–5609.
  • Flores, O., E. Maldonado, and D. Reinberg. 1989. Factors involved in specific transcription by mammalian RNA polymerase II. Factors IIE and IIF independently interact with RNA polymerase II. J. Biol. Chem. 264:8913–8921.
  • Guthrie, C., and G. R. Fink. 1991. Guide to yeast genetics and molecular biology. Methods Enzymol. 194:3–37.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Helmann, J. D. 1994. Bacterial sigma factors, p. 1–17. In R. C. Conaway and J. W. Conaway (ed.), Transcription: Mechanisms and regulation. Raven Press, New York, N.Y.
  • Henry, N. L., A. M. Campbell, W. J. Feaver, D. Poon, P. A. Weil, and R. D. Kornberg. 1994. TFIIF-TAF-RNA polymerase II connection. Genes Dev. 8:2868–2878.
  • Himmelfarb, H. J., J. Pearlberg, D. H. Last, and M. Ptashne. 1990. GAL11P: a yeast mutation that potentiate the effect of weak GAL4-derived activators. Cell 63:1299–1309.
  • Horiuchi, J., N. Silverman, G. A. Marcus, and L. Guarente. 1995. ADA3, a putative transcriptional adapter, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol. Cell. Biol. 15:1203–1209.
  • Jacq, X., C. Brou, Y. Lutz, I. Davidson, P. Chambon, and L. Tora. 1994. Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79:107–117.
  • Jiang, Y. W., P. R. Dohrmann, and D. J. Stillman. 1995. Genetic and physical interaction between yeast RGR1 and SIN4 in chromatin organization and transcriptional regulation. Genetics 140:47–54.
  • Johnston, M. et al. 1995. Unpublished GenBank submission.
  • Johnston, M. et al. Unpublished data.
  • Kim, Y.-J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal domain of RNA polymerase II. Cell 77:599–608.
  • Klein, H. L. Personal communication.
  • Koleske, A. J., and R. A. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469.
  • Koleske, A. J., and R. A. Young. 1995. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 20:113–116.
  • Li, Y., S. Bjorklund, Y. W. Jiang, Y. J. Kim, W. S. Lane, D. J. Stillman, and R. D. Kornberg. 1995. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 92:10864–10868.
  • Liang, P., and A. B. Pardee. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971.
  • Maldonado, E., R. Shiekhatter, M. Shelton, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. W. Anderson, S. Linn, and D. Reinberg. 1996. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381:86–89.
  • Marcus, G. A., N. Silverman, S. L. Berger, J. Horiuchi, and L. Guarente. 1994. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J. 13:4807–4815.
  • Nishizawa, M., S. Taga, and A. Matsubara. 1994. Positive and negative transcriptional regulation by the yeast GAL11 protein depends on the structure of the promoter and a combination of cis elements. Mol. Gen. Genet. 245:301–312.
  • Nonet, M. L., and R. A. Young. 1989. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain ofSaccharomyces cerevisiae RNA polymerase II. Genetics 123:715–724.
  • Novagen, Inc. 1992. pET system manual. Novagen, Inc., Madison, Wis.
  • Ohya, Y., H. Kawasaki, K. Suzuki, J. Londesborough, and Y. Anraku. 1991. Two yeast genes encoding calmodulin-dependent protein kinases. Isolation, sequencing, and bacterial expression of CMK1 and CMK2. J. Biol. Chem. 266:12784–12794.
  • Ossipow, V., J. P. Tassan, E. A. Nigg, and U. Schibler. 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Peterson, C. L., and J. W. Tamkun. 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20:143–146.
  • Reed, S. I. Personal communication.
  • Reed, S. I., J. Ferguson, and K. Y. Jahng. 1988. Isolation and characterization of two genes encoding yeast mating pheromone signalling elements: CDC72 and CDC73. Cold Spring Harbor Symp. Quant. Biol. 53:621–627.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–209.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Seroz, T., J. R. Hwang, V. Moncollin, and J. M. Egly. 1995. TFIIH: a link between transcription, DNA repair and cell cycle regulation. Curr. Biol. 5:217–221.
  • Shi, X. 1996. Molecular genetic analysis of RNA polymerase II-associated factors in Saccharomyces cerevisiae. Ph.D. thesis. University of Colorado Health Sciences Center, Denver.
  • Shi, X., A. Finkelstein, A. J. Wolf, P. A. Wade, Z. F. Burton, and J. A. Jaehning. 1996. Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription. Mol. Cell. Biol. 16:669–676.
  • Sopta, M., R. W. Carthew, and J. Greenblatt. 1985. Isolation of three proteins that bind to mammalian RNA polymerase II. J. Biol. Chem. 260:10353–10360.
  • Struhl, K. 1985. Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-ded1 gene region. Nucleic Acids Res. 13:8587–8601.
  • Suzuki, Y., Y. Nogi, A. Abe, and T. Fukasawa. 1988. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4991–4999.
  • Swanson, M. S., and F. Winston. 1992. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132:325–336.
  • Ter-Avanesyan, M. D., A. R. Dagkesamanskaya, V. V. Kushnirov, and V. N. Smirnov. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676.
  • Thompson, C. M., A. J. Koleske, D. M. Chao, and R. A. Young. 1993. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein. Cell 73:1361–1375.
  • Thompson, C. M., and R. A. Young. 1995. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92:4587–4590.
  • Tjian, R., and T. Maniatis. 1994. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77:5–8.
  • Ulery, T. L., S.-H. Jang, and J. A. Jaehning. 1994. Glucose repression of yeast mitochondrial transcription: kinetics of derepression and role of nuclear genes. Mol. Cell. Biol. 14:1160–1170.
  • Wade, P. A., and J. A. Jaehning. 1996. Transcriptional corepression in vitro: a Mot1p-associated form of TATA-binding protein is required for repression by Leu3p. Mol. Cell. Biol. 16:1641–1648.
  • Wade, P. A., S. D. Shaffer, and J. A. Jaehning. 1993. Resolution of transcription factors from a transcriptionally active whole-cell extract from yeast: purification of TFIIB, TBP and RNA polymerase IIa. Protein Expr. Purif. 4:290–297.
  • Wade, P. A., W. Werel, R. C. Fentzke, N. E. Thompson, J. F. Leykam, R. R. Burgess, J. A. Jaehning, and Z. F. Burton. 1996. A novel collection of accessory factors associated with yeast RNA polymerase II. Protein Expr. Purif. 8:85–90.
  • Wang, Z., S. Buratowski, J. Q. Svestrup, W. J. Feaver, X. Wu, R. D. Kornberg, T. F. Donahue, and E. C. Freidberg. 1995. The yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription. Mol. Cell. Biol. 15:2288–2293.
  • Wilson, C. J., D. M. Chao, A. N. Imbalzano, G. R. Schnitzler, R. E. Kingston, and R. A. Young. 1996. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84:235–244.
  • Woontner, M., P. A. Wade, J. J. Bonner, and J. A. Jaehning. 1991. Transcriptional activation in an improved whole-cell extract from Saccharomyces cerevisiae. Mol. Cell. Biol. 11:4555–4560.
  • Young, R. A. Personal communication.
  • Zawel, L., P. Kumar, and D. Reinberg. 1995. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9:1479–1490.
  • Zawel, L., and D. Reinberg. 1995. Common themes in assembly of eukaryotic transcription complexes. Annu. Rev. Biochem. 64:533–561.
  • Zhu, H., and A. F. Riggs. 1992. Yeast flavohemoglobin is an ancient protein related to globins and a reductase family. Proc. Natl. Acad. Sci. USA 89:5015–5019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.