7
Views
256
CrossRef citations to date
0
Altmetric
Research Article

Lck Regulates Vav Activation of Members of the Rho Family of GTPases

, , , , , , , & show all
Pages 1346-1353 | Received 05 Jul 1996, Accepted 12 Nov 1996, Published online: 29 Mar 2023

REFERENCES

  • Adams, J. M., H. Houston, J. Allen, T. Lints, and R. Harvey. 1992. The hematopoietically expressed Vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the bcr gene and a yeast gene (CDC24) involved in cytoskeletal organization. Oncogene 7:611–618.
  • Bender, A., and J. R. Pringle. 1989. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl. Acad. Sci. USA 86:9976–9980.
  • Boguski, M. S., and F. McCormick. 1993. Proteins regulating Ras and its relatives. Nature 366:643–654.
  • Broek, D., N. Samiy, O. Fasano, A. Fujiyama, F. Tamanoi, J. Northup, and M. Wigler. 1985. Differential activation of yeast adenylate cyclase by wild-type and mutant Ras proteins. Cell 41:763–769.
  • Bustelo, X. R., K. L. Suen, K. Leftheris, C. A. Meyers, and M. Barbacid. 1994. Vav cooperates with Ras to transform rodent fibroblasts but is not a Ras GDP/GTP exchange factor. Oncogene 9:2405–2413.
  • Cen, H., A. G. Papageorge, R. Zippel, D. R. Lowy, and K. Zhang. 1992. Isolation of multiple mouse cDNAs with coding homology to Saccharomyces cerevisiae CDC25: identification of a region related to Bcr, Vav, Dbl and CDC24. EMBO J. 11:4007–4015.
  • Clark, G. J., A. D. Cox, S. M. Graham, and C. J. Der. 1995. Biological assays for Ras transformation. Methods Enzymol. 255:395–412.
  • Coleman, K. G., H. Y. Steensma, D. B. Kaback, and J. R. Pringle. 1986. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation and characterization of the CDC24 gene and adjacent regions of the chromosome. Mol. Cell. Biol. 6:4516–4525.
  • Coppola, J., S. Bryant, T. Koda, D. Conway, and M. Barbacid. 1991. Mechanism of activation of the Vav protooncogene. Cell Growth Differ. 2:95–105.
  • Coso, O. A., M. Chiariello, J. C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. S. Gutkind. 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146.
  • Field, J., D. Broek, T. Kataoka, and M. Wigler. 1987. Guanine nucleotide activation of, and competition between, RAS proteins from Saccharomyces cerevisiae. Mol. Cell. Biol. 7:2128–2133.
  • Galland, F., S. Katzav, and D. Birnbaum. 1992. The products of the mcf-2 and vav proto-oncogenes and of the yeast gene cdc-24 share sequence similarities. Oncogene 7:585–587.
  • Gimona, M., A. Watakabe, and D. M. Helfman. 1995. Specificity of dimer formation in tropomyosins: influence of alternatively spliced exons on homodimerand heterodimer assembly. Proc. Natl. Acad. Sci. USA 92:9776–9780.
  • Gulbins, E., K. M. Coggeshall, G. Baier, S. Katzav, P. Burn, and A. Altman. 1993. Tyrosine kinase-stimulated guanine nucleotide exchange activity of Vav in T cell activation. Science 260:822–825.
  • Gulbins, E., K. M. Coggeshall, C. Langlet, G. Baier, N. Bonnefoy-Berard, P. Burn, A. Wittinghofer, S. Katzav, and A. Altman. 1994. Activation of Ras in vitro and in intact fibroblasts by the Vav guanine nucleotide exchange protein. Mol. Cell. Biol. 14:906–913.
  • Gulbins, E., K. M. Coggeshall, G. Baier, D. Telford, C. Langlet, G. Baier-Bitterlich, N. Bonnefoy-Berard, P. Burn, A. Wittinghofer, and A. Altman. 1994. Direct stimulation of Vav guanine nucleotide exchange activity for Ras by phorbol esters and diglycerides. Mol. Cell. Biol. 14:4749–4758.
  • Gupta, S., D. Campbell, B. Derijard, and R. J. Davis. 1995. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267:389–393.
  • Han, J., and D. Broek. Unpublished data.
  • Hart, M. J., A. Eva, T. Evans, S. A. Aaronson, and R. A. Cerione. 1991. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 354:311–314.
  • Hart, M. J., A. Evans, D. Zangrilli, S. A. Aaronson, T. Evans, R. A. Cerione, and Y. Zheng. 1994. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J. Biol. Chem. 269:62–65.
  • Hill, C. S., J. Wynne, and R. Treisman. 1995. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170.
  • Johnson, D. I., and J. R. Pringle. 1990. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111:143–152.
  • Katzav, S., D. Martin-Zanca, and M. Barbacid. 1989. Vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 8:2283–2290.
  • Katzav, S., J. L. Cleveland, H. E. Heslop, and D. Pulido. 1991. Loss of the amino-terminal helix-loop-helix domain of the vav proto-oncogene activates its transforming potential. Mol. Cell. Biol. 11:1912–1920.
  • Khosravi-Far, R., M. Chrzanowska-Wodnicka, P. A. Solski, A. Eva, K. Burridge, and C. J. Der. 1994. Dbl and Vav mediate transformation via mitogen-activated protein kinase pathways that are distinct from those activated by oncogenic Ras. Mol. Cell. Biol. 14:6848–6857.
  • Khosravi-Far, R., P. A. Solski, G. J. Clark, M. S. Kinch, and C. J. Der. 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15:6443–6453.
  • Kolanus, W., C. Romeo, and B. Seed. 1993. T cell activation by clustered tyrosine kinases. Cell 74:171–183.
  • Kozma, R., S. Ahmed, A. Best, and L. Lim. 1995. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15:1942–1952.
  • Manser, E., C. Chong, Z.-S. Zhao, T. Leung, G. Michael, C. Hall, and L. Lim. 1995. Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J. Biol. Chem. 270:25070–25078.
  • Margolis, B., P. Hu, S. Katzav, W. Li, J. M. Oliver, A. Ullrich, A. Weiss, and J. Schlessinger. 1992. Tyrosine phosphorylation of Vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature 356:71–74.
  • Marth, J. D., R. Peet, E. G. Krebs, and R. M. Perimutter. 1985. A lymphocyte-specific protein-tyrosine kinase gene is rearranged and overexpressed inthe murine T cell lymphoma LSTRA. Cell 43:393–404.
  • Minden, A., A. Lin, F. X. Claret, A. Abo, and M. Karin. 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157.
  • Mosteller, R. D., J. Han, and D. Broek. 1994. Identification of residues of the H-Ras protein critical for functional interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14:1104–1112.
  • Mustelin, T., and P. Burn. 1993. Regulation of src family tyrosine kinases in lymphocytes. Trends Biochem. Sci. 18:215–220.
  • Nobes, C. D., and A. Hall. 1995. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62.
  • Park, W., R. D. Mosteller, and D. Broek. 1994. Amino acid residues in the CDC25 guanine nucleotide exchange factor critical for interaction with Ras. Mol. Cell. Biol. 14:8117–8122.
  • Qiu, R.-G., J. Chen, D. Kirn, F. McCormick, and M. Symons. 1995. An essential role for Rac in Ras transformation. Nature 374:457–459.
  • Quilliam, L. A., S. Y. Huff, K. M. Rabun, W. Wei, W. Park, D. Broek, and C. J. Der. 1994. Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc. Natl. Acad. Sci. USA 91:8512–8516.
  • Ridley, A. J., H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Sherman, F., G. R. Fink, and J. B. Hicks (ed.). 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Small, J. V. 1988. The actin cytoskeleton. Electron Microsc. Rev. 1:155–174.
  • Tanaka, M., and W. Herr. 1990. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphor-ylation. Cell 60:375–386.
  • Tarakhovsky, A., M. Turner, S. Schaal, P. J. Mee, L. P. Duddy, K. Rajewsky, and V. L. Tybulewicz. 1995. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374:467–470.
  • Weiss, A. 1993. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73:209–212.
  • Westwick, J. K., and D. A. Brenner. 1995. Methods for analyzing c-Jun kinase. Methods Enzymol. 255:342–359.
  • Wright, D. D., B. M. Sefton, and M. P. Kamps. 1994. Oncogenic activation of the Lck protein accompanies translocation of the LCK gene in the human HSB2 T-cell leukemia. Mol. Cell. Biol. 14:2429–2437.
  • Young, D., M. Riggs, J. Field, A. Vojtek, D. Broek, and M. Wigler. 1989. The adenylate cyclase gene from Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 86:7989–7993.
  • Zhang, S., J. Han, M. A. Sells, J. Chernoff, U. G. Knaus, R. J. Ulevitch, and G. M. Bokoch. 1995. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J. Biol. Chem. 270:23934–23936.
  • Zheng, Y., R. Cerione, and A. Bender. 1994. Control of the yeast bud-site assembly GTPase Cdc42. J. Biol. Chem. 269:2369–2372.
  • Ziman, M., J. M. O’Brien, L. A. Ouellette, W. R. Church, and D. I. Johnson. 1991. Mutational analysis of CDC42Sc, a Saccharomyces cerevisiae gene that encodes a putative GTP-binding protein involved in the control of cell polarity. Mol. Cell. Biol. 11:3537–3544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.