8
Views
48
CrossRef citations to date
0
Altmetric
Research Article

Phosphorylation of the RNA Polymerase II Largest Subunit during Xenopus laevis Oocyte Maturation

, , , &
Pages 1434-1440 | Received 01 Aug 1996, Accepted 15 Dec 1996, Published online: 29 Mar 2023

REFERENCES

  • Almouzni, G., and A. P. Wolffe. 1993. Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes Dev. 7:2033–2047.
  • Almouzni, G., and A. P. Wolffe. 1995. Constraints on transcriptional activator function contribute to transcriptional quiescence during early Xenopus em-bryogenesis. EMBO J. 14:1752–1765.
  • Almouzni, G. Unpublished results.
  • Baskaran, R., G. G. Chiang, and J. Y. J. Wang. 1996. Identification of a binding site in c-Abl tyrosine kinase for the C-terminal repeated domain of RNA polymerase II. Mol. Cell. Biol. 16:3361–3369.
  • Brown, A. J., T. Jones, and J. Shuttleworth. 1994. Expression and activity of p40MO15, the catalytic subunit of cdk-activating kinase, during Xenopus oogenesis and embryogenesis. Mol. Biol. Cell 5:921–932.
  • Chambers, R. S., B. Q. Wang, Z. F. Burton, and M. E. Dahmus. 1995. The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB. J. Biol. Chem. 270:14962–14969.
  • Cisek, L. J., and J. L. Corden. 1989. Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2. Nature 339:679–684.
  • Cisek, L. J., and J. L. Corden. 1991. Purification of protein kinases that phosphorylate the repetitive carboxyl-terminal domain of eukaryotic RNA polymerase II. Methods Enzymol. 200:301–325.
  • Cismowski, M. J., G. M. Laff, M. J. Solomon, and S. I. Reed. 1995. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Mol. Cell. Biol. 15:2983–2992.
  • Corden, J. L. 1990. Tails of RNA polymerase II. Trends Biochem. Sci. 15:383–387.
  • Corden, J. L. 1993. RNA polymerase II transcription cycles. Curr. Opin. Genet. Dev. 3:213–218.
  • Dahmus, M. E. 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271:19009–19012.
  • Dahmus, M. E. 1995. Phosphorylation of the C-terminal domain of RNA polymerase II. Biochim. Biophys. Acta 1261:171–182.
  • Davidson, E. H. 1986. Gene activity in early development. Academic Press, Orlando, Fla.
  • Dubois, M.-F., V. T. Nguyen, M. E. Dahmus, G. Pages, J. Pouyssegur, and O. Bensaude. 1994. Enhanced phosphorylation of the C-terminal domain of RNA polymerase II upon serum stimulation of quiescent cells: possible involvement of MAP kinases. EMBO J. 13:4787–4797.
  • Dubois, M. F., V. T. Nguyen, S. Bellier, and O. Bensaude. 1994. Inhibitors of transcription such as 5,6-dichloro-1-β-D-ribofuranosyl benzimidazole (DRB) and isoquinoline sulfonamide derivatives (H-8 and H-7*), promote the phosphorylation of the C-terminal domain (CTD) of RNA polymerase II largest subunit. J. Biol. Chem. 269:13331–13336.
  • Dumont, J. N. 1972. Oogenesis in Xenopus laevis (Daudin). 1. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136:153.
  • Dvir, A., S. R. Peterson, M. W. Knuth, H. Lu, and W. S. Dynan. 1992. Ku antigen in the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl. Acad. Sci. USA 89:11920–11924.
  • Emili, A., and C. J. Ingles. 1995. The RNA polymerase II carboxy-terminal domain: links to a bigger and better ’holoenzyme’? Curr. Opin. Genet. Dev. 5:204–209.
  • Feaver, W. J., J. Q. Svejstrup, N. L. Henry, and R. D. Kornberg. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–1109.
  • Ferrell, J. E., Jr., M. Wu, J. C. Gerhart, and G. S. Martin. 1991. Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog inXenopus oocytes and eggs. Mol. Cell. Biol. 11:1965–1971.
  • Fesquet, D., J.-C. Labbé, J. Derancourt, J.-P. Capony, S. Galas, F. Girard, T. Lorca, J. Shuttleworth, M. Doree, and J.-C. Cavadore. 1993. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12:3111–3121.
  • Gotoh, Y., K. Moriyama, S. Matsuda, E. Okumura, T. Kishimoto, H. Kawasaki, K. Suzuki, I. Yahara, H. Sakai, and E. Nishida. 1991. Xenopus M phase MAP kinase: isolation of its cDNA and activation by MPF. EMBO J. 10:2661–2668.
  • Gotoh, Y., E. Nishida, S. Matsuda, N. Shiina, H. Kosako, K. Shiokawa, T. Akiyama, K. Ohta, and H. Satai. 1991. In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase. Nature 349:251–254.
  • Haccard, O., C. Jessus, X. Cayla, J. Goris, W. Merlevede, and R. Ozon. 1990. In vivo activation of a microtubule-associated protein kinase during meiotic maturation of the Xenopus oocyte. Eur. J. Biochem. 192:633–642.
  • Haccard, O., C. Jessus, H. Rime, J. Goris, W. Merlevede, and R. Ozon. 1993. Mitogen-activated protein kinase (MAP kinase) activation in Xenopus oo-cytes: roles of MPF and protein synthesis. Mol. Reprod. Dev. 36:96–105.
  • Hoeijmakers, J. H. J., J.-M. Egly, and W. Vermeulen. 1996. TFIIH: a key component in multiple DNA transactions. Curr. Opin. Genet. Dev. 6:26–33.
  • Itoh, F., and E. Nishida. Unpublished data.
  • Kim, W.-Y., and M. E. Dahmus. 1986. Immunochemical analysis of mammalian RNA polymerase II subspecies. J. Biol. Chem. 261:14219–14225.
  • Koleske, A. J., S. Buratowski, M. Nonet, and R. A. Young. 1992. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69:883–894.
  • Koleske, A. J., and R. A. Young. 1995. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 20:113–116.
  • Krämer, A., R. Haars, R. Kabish, H. Will, F. A. Bautz, and E. K. F. Bautz. 1980. Monoclonal antibody directed against RNA polymerase II of Drosoph-ila melanogaster. Mol. Gen. Genet. 180:193–199.
  • LaMarca, M. J., M. C. Strobel-Fidler, L. D. Smith, and K. Keem. 1975. Hormonal effect on RNA synthesis by stage 6 oocytes of Xenopus laevis. Dev. Biol. 47:384–393.
  • Lee, J. M., and A. L. Greenleaf. 1991. CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr. 1:149–167.
  • Liao, S.-M., J. Zhang, D. A. Jeffery, A. J. Koleske, C. M. Thompson, D. M. Chao, M. Viljoen, H. J. J. van Vuuren, and R. A. Young. 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374:193–196.
  • Maller, J. 1995. Maturation-promoting factor in the early days. Trends Biochem. Sci. 20:524–528.
  • Maxon, M. E., J. A. Goodrich, and R. Tjian. 1994. Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev. 8:515–524.
  • Murray, A. W., M. J. Solomon, and M. W. Kirschner. 1989. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339:280–286.
  • Nishida, E., and Y. Gotoh. 1993. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18:128–131.
  • Ossipow, V., J. P. Tassan, E. A. Nigg, and U. Schibler. 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:37–146.
  • Poon, R. Y. C., K. Yamashita, M. Howell, M. A. Ershler, A. Belyavsky, and T. Hunt. 1994. Cell cycle regulation of the p34cdc2/p33cdk2-activating kinase MO15. J. Cell Sci. 107:2789–2799.
  • Posada, J., J. Sanghera, S. L. Pelech, R. Aebersold, and J. A. Cooper. 1991. Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Mol. Cell. Biol. 11:2517–2528.
  • Rafferty, K. A. 1969. Pages 58–81. In M. Mizell (ed.), Biology of amphibian tumors. Springer-Verlag, Berlin, Germany.
  • Rice, S. A., M. C. Long, V. Lam, and C. A. Spencer. 1994. RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J. Virol. 68:988–1001.
  • Roeder, R. G. 1974. Multiple forms of deoxyribonucleic acid-dependent ribonucleic acid polymerase in Xenopus laevis: levels of activity during oocyte and embryonic development. J. Biol. Chem. 249:249–256.
  • Roy, R., J. P. Adamczewski, T. Seroz, W. Vermeulen, J.-P. Tassan, L. Schaeffer, E. A. Nigg, J. H. J. Hoeijmakers, and J.-M. Egly. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–1101.
  • Sawadogo, M., and A. Sentenac. 1990. RNA polymerase B (II) and general transcription factors. Annu. Rev. Biochem. 59:711–754.
  • Serizawa, H., T. Makela, J. W. Conaway, R. C. Conaway, R. A. Weinberg, and R. A. Young. 1995. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 374:280–282.
  • Shiekhattar, R., F. Mermelstein, R. Fisher, R. Drapkin, B. Dynlacht, H. C. Wessling, D. O. Morgan, and D. Reinberg. 1995. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374:283–287.
  • Sterner, D. E., J. M. Lee, S. E. Hardin, and A. L. Greenleaf. 1995. The yeast carboxyl-terminal domain kinase CTDK-I is a divergent cyclin-cyclin-depen-dent kinase complex. Mol. Cell. Biol. 15:5716–5724.
  • Svejstrup, J. Q., P. Vichi, and J.-M. Egly. 1996. The multiple roles of transcription/repair factor TFIIH. Trends Biochem. Sci. 21:346–350.
  • Tassan, J. P., M. Jaquenoud, P. Leopold, S. J. Schultz, and E. A. Nigg. 1995. Identification of human cdk8, a protein kinase partner for cyclin C and potential homolog of yeast SRB10. Proc. Natl. Acad. Sci. USA 92:8871–8875.
  • Toyoda, T., and A. P. Wolffe. 1992. Characterization of RNA polymerase II-dependent transcription in Xenopus extracts. Dev. Biol. 153:150–157.
  • Usheva, A., E. Maldonado, A. Goldring, H. Lu, C. Houbavi, D. Reinberg, and Y. Aloni. 1992. Specific interaction between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein. Cell 69:871–881.
  • Valay, J.-G., M. Simon, M.-F. Dubois, O. Bensaude, C. Facca, and G. Faye. 1995. The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpb1p CTD. J. Mol. Biol. 249:535–544.
  • Valay, J. G., M.-F. Dubois, O. Bensaude, and G. Faye. 1996. Cc11, a cyclin associated with protein kinase Kin28 controls the phosphorylation of RNA polymerase II largest subunit and mRNA transcription. C. R. Acad. Sci. Paris 319:183–190.
  • Venetianer, A., M.-F. Dubois, V. T. Nguyen, S. J. Seo, S. Bellier, and O. Bensaude. 1995. Phosphorylation state of RNA polymerase II C-terminal domain (CTD) in heat-shocked cells. Possible involvement of the stress activated MAP kinases. Eur. J. Biochem. 233:83–92.
  • Yankulov, K., K. Yamashita, R. Roy, J. M. Egly, and D. L. Bentley. 1995. The transcriptional elongation inhibitor 5,6-dichloro-1-β-D-ribofuranosylben-zimidazole inhibits transcription factor IIH-associated protein kinase. J. Biol. Chem. 270:23922–23925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.