22
Views
93
CrossRef citations to date
0
Altmetric
Research Article

DAP-5, a Novel Homolog of Eukaryotic Translation Initiation Factor 4G Isolated as a Putative Modulator of Gamma Interferon-Induced Programmed Cell Death

, , &
Pages 1615-1625 | Received 07 Oct 1996, Accepted 13 Dec 1996, Published online: 29 Mar 2023

REFERENCES

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Beretta, L., A. C. Gingras, Y. V. Svitkin, M. N. Hall, and N. Sonenberg. 1996. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 15:658–664.
  • Boeck, R., and D. Kolakofsky. 1994. Positions +5 and +6 can be major determinants of the efficiency of non-AUG initiation codons for protein synthesis. EMBO J. 13:3608–3617.
  • Clement, M. V., and I. Stamenkovic. 1996. Superoxide anion is a natural inhibitor of FAS-mediated cell death. EMBO J. 15:216–225.
  • Cohen, O., E. Feinstein, and A. Kimchi. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J., in press.
  • Darnell, J. E., Jr., I. M. Kerr, and G. R. Stark. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421.
  • Darveau, A., J. Pelletier, and N. Sonenberg. 1985. Differential efficiencies of in vitro translation of mouse c-myc transcripts differing in the 5′ untranslated region. Proc. Natl. Acad. Sci. USA 82:2315–2319.
  • De Benedetti, A., B. Joshi, J. R. Graff, and S. G. Zimmer. 1994. CHO cells transformed by the initiation factor eIF-4E display increased c-myc expression but require over expression of Max for tumorigenicity. Mol. Cell. Differ. 2:347–371.
  • De Benedetti, A., and R. E. Rhoads. 1990. Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology. Proc. Natl. Acad. Sci. USA 87:8212–8216.
  • Deckwerth, T. L., and E. M. Johnson, Jr. 1993. Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J. Cell Biol. 123:1207–1222.
  • Deiss, L. P., E. Feinstein, H. Berissi, O. Cohen, and A. Kimchi. 1995. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 9:15–30.
  • Deiss, L. P., H. Galinka, H. Berissi, O. Cohen, and A. Kimchi. 1996. Ca-thepsin D protease mediates programmed cell death induced by interferon-γ, FAS/APO-1 and TNF-α. EMBO J. 15:3861–3870.
  • Deiss, L. P., and A. Kimchi. 1991. A genetic tool used to identify thioredoxin as a mediator of a growth inhibitory signal. Science 252:117–120.
  • Duncan, R., S. C. Milburn, and J. W. B. Hershey. 1987. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J. Biol. Chem. 262:380–388.
  • Duncan, R. F. 1996. Translational control during heat shock, p. 271–294. In J. W. B. Hershey, M. Mathews, and N. Sonenberg (ed.), Translational control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Edery, I., M. Humbelin, A. Darveau, K. A. Lee, S. Milburn, J. W. B. Hershey, H. Trachsel, and N. Sonenberg. 1983. Involvement of eukaryotic initiation factor 4A in the cap recognition process. J. Biol. Chem. 258:11398–11403.
  • Feinstein, E., T. Druck, K. Kastury, H. Berissi, S. A. Goodart, J. Overhauser, A. Kimchi, and K. Huebner. 1995. Assignment of DAP1 and DAPK—genes that positively mediate programmed cell death triggered by IFN-gamma—to chromosome regions 5p12.2 and 9q34.1, respectively. Genomics 29:305–307.
  • Feinstein, E., D. Wallach, M. Boldin, E. Varfolomeev, and A. Kimchi. 1995. The death domain: a module shared by proteins with diverse cellular functions. Trends Biochem. Sci. 20:342–344.
  • Frederickson, R. M., K. S. Montine, and N. Sonenberg. 1991. Phosphorylation of eukaryotic translation initiation factor 4E is increased in Src-trans-formed cell lines. Mol. Cell. Biol. 11:2896–2900.
  • Gabig, T. G., P. L. Mantel, R. Rosli, and C. D. Crean. 1994. Requiem: a novel zinc finger gene essential for apoptosis in myeloid cells. J. Biol. Chem. 269:29515–29519.
  • Gan, W., and R. E. Rhoads. 1996. Internal initiation of translation directed by the 5′-untranslated region of the mRNA for eIF4G, a factor involved in the picornavirus-induced switch from cap-dependent to internal initiation. J. Biol. Chem. 271:623–626.
  • Gossen, M., and H. Bujard. 1992. Tight control of gene expression in mammaliancells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89:5547–5551.
  • Goyer, C., M. Altmann, H. S. Lee, A. Blanc, M. Deshmukh, J. L. Woolford, Jr., H. Trachsel, and N. Sonenberg. 1993. TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol. Cell. Biol. 13:4860–4874.
  • Grifo, J. A., S. M. Tahara, M. A. Morgan, A. J. Shatkin, and W. C. Merrick. 1983. New initiation factor activity required for globin mRNA translation. J. Biol. Chem. 258:5804–5810.
  • Hiremath, L. S., N. R. Webb, and R. E. Rhoads. 1985. Immunological detection of the messenger RNA cap-binding protein. J. Biol. Chem. 260:7843–7849.
  • Imataka, H., H. S. Olsen, and N. Sonenberg. A new translational regulator that is homologous to eukaryotic translation initiation factor 4G. EMBO J., in press.
  • Jackson, R. J., M. T. Howell, and A. Kaminski. 1990. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem. Sci. 15:477–483.
  • Kimchi, A. 1992. Cytokine triggered molecular pathways that control cell cycle arrest. J. Cell. Biochem. 50:1–9.
  • Kirchweger, R., E. Ziegler, B. J. Lamphear, D. Waters, H.-D. Liebig, W. Sommergruber, F. Sobrino, C. Hohenadl, D. Blaas, R. E. Rhoads, and T. Skern. 1994. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4γ. J. Virol. 68:5677–5684.
  • Kissil, J. L., L. P. Deiss, M. Bayewitch, T. Raveh, G. Khaspekov, and A. Kimchi. 1995. Isolation of DAP3, a novel mediator of interferon-gamma-induced cell death. J. Biol. Chem. 270:27932–27936.
  • Lamphear, B. J., R. Kirchweger, T. Skern, and R. E. Rhoads. 1995. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270:21975–21983.
  • Lamphear, B. J., R. Yan, F. Yang, D. Waters, H. D. Liebig, H. Klump, E. Kuechler, T. Skern, and R. E. Rhoads. 1993. Mapping the cleavage site in protein synthesis initiation factor eIF-4 gamma of the 2A proteases from human coxsackievirus and rhinovirus. J. Biol. Chem. 268:19200–19203.
  • Lazaris-Karatzas, A., K. S. Montine, and N. Sonenberg. 1990. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345:544–547.
  • Lazaris-Karatzas, A., and N. Sonenberg. 1992. The mRNA 5′ cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol. Cell. Biol. 12:1234–1238.
  • Levy-Strumpf, N., and A. Kimchi. Unpublished results.
  • Lin, T. A., X. Kong, T. A. Haystead, A. Pause, G. Belsham, N. Sonenberg, and J. C. Lawrence, Jr. 1994. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266:653–656.
  • Macejak, D. G., and P. Sarnow. 1991. Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353:90–94.
  • Mader, S., H. Lee, A. Pause, and N. Sonenberg. 1995. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15:4990–4997.
  • Manzella, J. M., W. Rychlik, R. E. Rhoads, J. W. Hershey, and P. J. Blackshear. 1991. Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J. Biol. Chem. 266:2383–2389.
  • Merrick, W. C., and J. W. B. Hershey. 1996. The pathway and mechanism of eukaryotic protein synthesis, p. 31–70. In J. W. B. Hershey, M. Mathews, and N. Sonenberg (ed.), Translational control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Meyuhas, O., D. Avni, and S. Shama. 1996. Translational control of ribo-somal protein mRNAs in eukaryotes, p. 363–388. In J. W. B. Hershey, M. Mathews, and N. Sonenberg (ed.), Translational control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Miura, M., R. M. Friedlander, and J. Yuan. 1995. Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc. Natl. Acad. Sci. USA 92:8318–8322.
  • Morley, S. J. 1994. Signal transduction mechanisms in the regulation of protein synthesis. Mol. Biol. Rep. 19:221–231.
  • Morley, S. J., and J. A. Traugh. 1989. Phorbol esters stimulate phosphorylation of eukaryotic initiation factors 3, 4B, and 4F. J. Biol. Chem. 264:2401–2404.
  • Oh, S. K., M. P. Scott, and P. Sarnow. 1992. Homeotic gene Antennapedia mRNA contains 5′-noncoding sequences that confer translational initiation by internal ribosome binding. Genes Dev. 6:1643–1653.
  • Ohlmann, T., M. Rau, V. M. Pain, and S. J. Morley. 1996. The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF)4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO J. 15:1371–1382.
  • Pause, A., G. J. Belsham, A. C. Gingras, O. Donze, T. A. Lin, J. C. Lawrence, Jr., and N. Sonenberg. 1994. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767.
  • Rost, B., and C. Sander. 1993. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232:584–599.
  • Rost, B., and C. Sander. 1994. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19:55–72.
  • Sarnow, P. 1989. Translation of glucose-regulated protein 78/immunoglob-ulin heavy-chain binding protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent translation of cellular mRNAs is inhibited. Proc. Natl. Acad. Sci. USA 86:5795–5799.
  • Shantz, L. M., and A. E. Pegg. 1994. Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res. 54:2313–2316.
  • Sonenberg, N. 1996. mRNA 5′ cap-binding protein eIF4E and control of cell growth, p. 245–270. In J. W. B. Hershey, M. Mathews, and N. Sonenberg (ed.), Translational control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sonenberg, N., M. A. Morgan, W. C. Merrick, and A. J. Shatkin. 1978. A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′-terminal cap in mRNA. Proc. Natl. Acad. Sci. USA 75:4843–4847.
  • Sonenberg, N., K. M. Rupprecht, S. M. Hecht, and A. J. Shatkin. 1979. EukaryoticmRNA cap binding protein: purification by affinity chromatography on Sepharose-coupled m7GDP. Proc. Natl. Acad. Sci. USA 76:4345–4349.
  • Tahara, S. M., M. A. Morgan, and A. J. Shatkin. 1981. Two forms of purified m7G-cap binding protein with different effects on capped mRNA translation in extracts of uninfected and poliovirus-infected HeLa cells. J. Biol. Chem. 256:7691–7694.
  • Tiefenbrun, N., D. Melamed, N. Levy, D. Resnitzky, I. Hoffmann, S. I. Reed, and A. Kimchi. 1996. Alpha interferon suppresses the cyclin D3 and cdc25A genes, leading to a reversible G0-like arrest. Mol. Cell. Biol. 16:3934–3944.
  • Vagner, S., M. C. Gensac, A. Maret, F. Bayard, F. Amalric, H. Prats, and A. C. Prats. 1995. Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol. Cell. Biol. 15:35–44.
  • Vito, P., E. Lacana, and L. D’Adamio. 1996. Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 271:521–525.
  • Yan, R., W. Rychlik, D. Etchison, and R. E. Rhoads. 1992. Amino acid sequence of the human protein synthesis initiation factor eIF-4g. J. Biol. Chem. 267:23226–23231.
  • Zakeri, Z., D. Quaglino, T. Latham, K. Woo, and R. A. Lockshin. 1996. Programmed cell death in the tobacco hornworm, Manduca sexta: alteration in protein synthesis. Microsc. Res. Tech. 34:192–201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.