4
Views
9
CrossRef citations to date
0
Altmetric
Research Article

The Sex-lethal Early Splicing Pattern Uses a Default Mechanism Dependent on the Alternative 5′ Splice Sites

, &
Pages 1674-1681 | Received 16 Jul 1996, Accepted 16 Dec 1996, Published online: 29 Mar 2023

REFERENCES

  • Bell, L. R., E. M. Maine, P. Schedl, and T. W. Cline. 1988. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55:1037–1046.
  • Bernstein, M., and T. W. Cline. 1994. Differential effects of Sex-lethal mutations on dosage compensation early in Drosophila development. Genetics 136:1051–1061.
  • Black, D. L. 1990. Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non-neuronal cells? Genes Dev. 5:389–402.
  • Black, D. L. 1992. Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 69:795–807.
  • Black, D. L. 1995. Finding splice sites within a wilderness of RNA. RNA 1:763–771.
  • Carlo, T., D. A. Sterner, and S. M. Berget. 1996. An intron splicing enhancer containing a G-rich repeat facilitates inclusion of a vertebrate micro-exon. RNA 2:342–353.
  • Chiara, M. D., and R. Reed. 1995. A two-step mechanism for 5′ and 3′ splice-site pairing. Nature 375:510–512.
  • Cline, T. W. 1979. A male-specific lethal mutation in Drosophila melanogaster that transforms sex. Dev. Biol. 72:266–275.
  • Cline, T. W. 1984. Autoregulatory functioning of a Drosophila gene product that establishes and maintains the sexually determined state. Genetics 107:231–277.
  • Del Gatto, F., and R. Breathnach. 1995. Exon and intron sequences, respectively, repress and activate splicing of a fibroblast growth factor receptor 2 alternative exon. Mol. Cell. Biol. 15:4825–4834.
  • Di Nocera, P. P., and I. B. Dawid. 1983. Transient expression of genes introduced into cultured cells of Drosophila. Proc. Natl. Acad. Sci. USA 80:7095–7098.
  • Dirksen, W. P., R. K. Hampson, Q. Sun, and F. M. Rottman. 1994. A purine-rich exon sequence enhances alternative splicing of bovine growth hormone pre-mRNA. J. Biol. Chem. 269:6431–6436.
  • Elion, E. A., and J. R. Warner. 1984. The major promoter element of rRNA transcription in yeast lies 2 kb upstream. Cell 39:663–673.
  • Fu, X.-D. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1:663–680.
  • Gallego, M. E., and B. Nadal-Ginard. 1990. Myosin light-chain 1/3 gene alternative splicing: cis regulation is based upon a hierarchical compatibility between splice sites. Mol. Cell. Biol. 10:2133–2144.
  • Goguel, V., and M. Rosbash. 1993. Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast. Cell 72:893–901.
  • Gorman, M., and B. Baker. 1994. How flies make one equal two: dosage compensation in Drosophila. Trends Genet. 10:376–380.
  • Hedley, M. L., and T. Maniatis. 1991. Sex-specific splicing and polyadenyl-ation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein. Cell 65:579–586.
  • Horabin, J. I., and P. Schedl. 1993. Regulated splicing of the Drosophila Sex-lethal male exon involves a blockage mechanism. Mol. Cell. Biol. 13:1408–1414.
  • Horabin, J. I., and P. Schedl. 1993. Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5′ splice site. Mol. Cell. Biol. 13:7734–7746.
  • Horabin, J. I., and P. Schedl. 1996. Splicing of the Drosophila Sex-lethal early transcripts involves exon skipping that is independent of Sex-lethal protein. RNA 2:1–10.
  • Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease. 1989. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68.
  • Huh, G. S., and R. O. Hynes. 1994. Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes Dev. 8:1561–1574.
  • Humphrey, M. B., J. Bryan, T. A. Cooper, and S. M. Berget. 1995. A 32-nucleotide exon-splicing enhancer regulates usage of competing 5′ splice sites in a differential internal exon. Mol. Cell. Biol. 15:3979–3988.
  • Inoue, K., K. Hoshijima, I. Higuchi, H. Sakamoto, and Y. Shimura. 1992. Binding of the Drosophila transformer and transformer-2 proteins to the regulatory elements of doublesex primary transcript for sex-specific RNA processing. Proc. Natl. Acad. Sci. USA 89:8092–8096.
  • Inoue, K., K. Hoshijima, H. Sakamoto, and Y. Shimura. 1990. Binding of the Drosophila Sex-lethal gene product to the alternative splice site of transformer primary transcript. Nature 344:461–463.
  • Keyes, L. N., T. W. Cline, and P. Schedl. 1992. The primary sex determination signal of Drosophila acts at the level of transcription. Cell 68:933–943.
  • Lavigueur, A., H. L. Branche, A. R. Kornblihtt, and B. Chabot. 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 7:2405–2417.
  • Lynch, K. W., and T. Maniatis. 1995. Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev. 9:284–293.
  • Lynch, K. W., and T. Maniatis. 1996. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 10:2089–2101.
  • Madhani, H. D., and C. Guthrie. 1994. Dynamic RNA-RNA interactions in the spliceosome. Annu. Rev. Genet. 28:1–26.
  • Marchuk, D., M. Drumm, A. Saulino, and F. C. Collins. 1991. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 19:1154.
  • Moore, M. J., C. C. Query, and P. A. Sharp. 1993. Splicing of precursors to mRNA by the spliceosome, p. 303–357. In R. F. Gesteland and J. F. Atkins (ed.), The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459–472.
  • Mount, S. M., C. Burks, G. Hertz, G. D. Stormo, O. White, and C. Fields. 1992. Splicing signals in Drosophila: intron size, information content and consensus sequences. Nucleic Acids Res. 20:4255–4262.
  • Newman, A. J. 1987. Specific accessory sequences in Saccharomyces cerevisiae introns control assembly of pre-mRNAs into spliceosomes. EMBO J. 6:3833–3839.
  • Niwa, M., C. C. MacDonald, and S. M. Berget. 1992. Are vertebrate exons scanned during splice-site selection? Nature 360:277–280.
  • Robberson, B. L., G. J. Cote, and S. M. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Rubin, G., and A. Spradling. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353.
  • Ryner, L. C., and B. S. Baker. 1991. Regulation of doublesex pre-mRNA processing occurs by 3′-splice site activation. Genes Dev. 5:2071–2085.
  • Sakamoto, H., K. Inoue, I. Higuchi, Y. Ono, and Y. Shimura. 1992. Control of Drosophila Sex-lethal pre-mRNA splicing by its own female-specific product. Nucleic Acids Res. 20:5533–5540.
  • Salz, H. K., T. W. Cline, and P. Schedl. 1987. Functional changes associated with structural alterations induced by mobilization of a P element inserted in the Sex-lethal gene of Drosophila. Genetics 117:221–231.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Samuels, M. E., D. Bopp, R. A. Colvin, R. F. Roscigno, M. A. Garcia-Blanco, and P. Schedl. 1994. RNA binding by Sxl proteins in vitro and in vivo. Mol. Cell. Biol. 14:4975–4990.
  • Schneider, I. 1972. Cell lines derived from the late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27:355–365.
  • Sosnowski, B. A., D. D. Davis, R. T. Boggs, S. J. Madigan, and M. McKeown. 1994. Multiple portions of a small region of the Drosophila transformer gene are required for efficient in vivo sex-specific regulated RNA splicing and in vitro Sex-lethal binding. Dev. Biol. 161:302–312.
  • Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and F. M. Rottman. 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7:2598–2608.
  • Talcerico, M., and S. M. Berget. 1990. Effect of 5′ splice site mutations onsplicing of the preceding intron. Mol. Cell. Biol. 10:6299–6305.
  • Tian, M., and T. Maniatis. 1992. Positive control of pre-mRNA splicing in vitro. Science 256:237–240.
  • Tian, M., and T. Maniatis. 1994. A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev. 8:1703–1712.
  • Valcarcel, J., R. Singh, P. D. Zamore, and M. R. Green. 1993. The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature 362:171–175.
  • Wang, J., and L. R. Bell. 1994. The Sex-lethal amino terminus mediates cooperative interactions in RNA binding and is essential for splicing regulation. Genes Dev. 8:2072–2085.
  • Watakabe, A., K. Tanaka, and Y. Shimura. 1993. The role of exon sequences in splice site selection. Genes Dev. 7:407–418.
  • Xu, R., J. Teng, and T. A. Cooper. 1993. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol. Cell. Biol. 13:3660–3674.
  • Zahler, A. M., and M. B. Roth. 1995. Distinct functions of SR proteins in recruitment of U1 small nuclear ribonucloprotein to alternative 5′ splice sites. Proc. Natl. Acad. Sci. USA 92:2642–2646.
  • Zamore, P. D., J. G. Patton, and M. G. Green. 1992. Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355:609–614.
  • Zhang, M., P. D. Zamore, M. Carmo-Fonseca, A. I. Lamond, and M. G. Green. 1992. Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit. Proc. Natl. Acad. Sci. USA 89:8769–8773.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.