32
Views
55
CrossRef citations to date
0
Altmetric
Research Article

An Origin of Replication and a Centromere Are Both Needed To Establish a Replicative Plasmid in the Yeast Yarrowia lipolytica

, , , , , & show all
Pages 1995-2004 | Received 22 Nov 1996, Accepted 23 Jan 1997, Published online: 29 Mar 2023

REFERENCES

  • Amati, B., and S. M. Gasser. 1988. Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold. Cell 54:967–978.
  • Amati, B., L. Pick, T. Laroche, and S. M. Gasser. 1990. Nuclear scaffold attachment stimulates, but is not essential for ARS activity in Saccharomyces cerevisiae: analysis of the Drosophila ftz SAR. EMBO J. 9:4007–4016.
  • Barth, G., and C. Gaillardin. 1996. Yarrowia lipolytica, p. 313–388. In K. Wolf (ed.), Nonconventional yeasts in biotechnology—a handbook. Springer-Verlag, Heidelberg, Germany.
  • Bénard, M., C. Lagnel, D. Pallotta, and G. Pierron. 1996. Mapping of a replication origin within the promoter region of two unlinked, abundantly transcribed actin genes of Physarum polycephalum. Mol. Cell. Biol. 16:968–976.
  • Benard, M., C. Lagnel, and G. Pierron. 1995. Site-specific initiation of DNA replication within the non-transcribed spacer of Physarum rDNA. Nucleic Acids Res. 23:1447–1453.
  • Bogdanova, A. I., M. O. Agaphonov, and M. D. Ter-Avanesyan. 1995. Plasmid reorganization during integrative transformation in Hansenula polymorpha. Yeast 11:343–353.
  • Brewer, B. J., and W. L. Fangman. 1994. Initiation preference at a yeast origin of replication. Proc. Natl. Acad. Sci. USA 91:3418–3422.
  • Brewer, B. J., and W. L. Fangman. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Brun, C., Q. Dang, and R. Miassod. 1990. Studies of an 800-kilobase DNA stretch of the Drosophila X chromosome: comapping of a subclass of scaffold-attached regions with sequences able to replicate autonomously in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:5455–5463.
  • Brun, C., D. D. Dubey, and J. A. Huberman. 1995. pDblet, a stable autonomously replicating shuttle vector for Schizosaccharomyces pombe. Gene 164:173–177.
  • Brun, C., N. Jullien, M. Jacobzone, C. Gautier, and R. Miassod. 1995. SAR, ARSs, and A,T-rich regions evidenced by restriction mapping on an 835-kb DNA fragment from Drosophila. Exp. Cell Res. 220:338–347.
  • Burhans, W. C., and J. A. Huberman. 1994. DNA replication origins in animal cells: a question of context? Science 263:639–640.
  • Caddle, M. S., and M. P. Calos. 1994. Specific initiation at an origin of replication from Schizosaccharomyces pombe. Mol. Cell. Biol. 14:1796–1805.
  • Clyne, R. K., and T. J. Kelly. 1995. Genetic analysis of an ARS element from the fission yeast Schizosaccharomyces pombe. EMBO J. 14:6348–6357.
  • DePamphilis, M. L. 1993. Origins of DNA replication in metazoan chromosomes. J. Biol. Chem. 268:1–4.
  • Dershowitz, A., and C. S. Newlon. 1993. The effect on chromosome stability of deleting replication origins. Mol. Cell. Biol. 13:391–398.
  • Deshpande, A. M., and C. S. Newlon. 1992. The ARS consensus sequence is required for chromosomal origin function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4305–4313.
  • Diffley, J. F. X. 1995. The initiation of DNA replication in the budding yeast cell division cycle. Yeast 11:1651–1670.
  • Dijkwel, P. A., J. P. Vaughn, and J. L. Hamlin. 1994. Replication initiation sites are distributed widely in the amplified CHO dihydrofolate reductase domain. Nucleic Acids Res. 22:4989–4996.
  • Dubey, D. D., L. R. Davis, S. A. Greenfeder, L. Y. Ong, J. Zhu, J. R. Broach, C. S. Newlon, and J. A. Huberman. 1991. Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal replication origins. Mol. Cell. Biol. 11:5346–5355.
  • Dubey, D. D., S.-M. Kim, I. T. Todorov, and J. A. Huberman. 1996. Large, complex modular structure of a fission yeast DNA replication origin. Curr. Biol. 6:467–473.
  • Dubey, D. D., J. G. Zhu, D. L. Carlson, K. Sharma, and J. A. Huberman. 1994. Three ARS elements contribute to the ura4 replication origin region in the fission yeast, Schizosaccharomyces pombe. EMBO J. 13:3638–3647.
  • Fabiani, L., M. Aragona, and L. Frontali. 1990. Isolation and sequence analysis of a K. lactis chromosomal DNA element able to autonomously replicate in S. cerevisiae and K. lactis. Yeast 6:69–76.
  • Fabiani, L., L. Frontali, and C. S. Newlon. 1996. Identification of an essential core element and stimulatory sequences in a Kluyveromyces lactis ARS element, KARS101. Mol. Microbiol. 19:757–766.
  • Fan, Q., and M.-C. Yao. 1996. New telomere formation coupled with sitespecificchromosome breakage in Tetrahymena thermophila. Mol. Cell. Biol. 16:1267–1274.
  • Fournier, P., A. Abbas, M. Chasles, B. Kudla, D. M. Ogrydziak, D. Yaver, J.-W. Xuan, A. Peito, A.-M. Ribet, C. Feynerol, F. He, and C. Gaillardin. 1993. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc. Natl. Acad. Sci. USA 90:4912–4916.
  • Fournier, P., L. Guyaneux, M. Chasles, and C. Gaillardin. 1991. Scarcity of ARS sequences isolated in a morphogenesis mutant of the yeast Yarrowia lipolytica. Yeast 7:25–36.
  • Gaillardin, C., and A.-M. Ribet. 1987. LEU2 directed expression of β-galactosidase activity and phleomycin resistance in Yarrowia lipolytica. Curr. Genet. 11:369–375.
  • Gammie, A. E., and M. D. Rose. 1995. Identification and characterization of CEN12 in the budding yeast Saccharomyces cerevisiae. Curr. Genet. 28:512–516.
  • Georgiev, G. P., Y. S. Vassetzky, A. N. Luchnik, V. V. Chernokhvostov, and S. V. Razin. 1991. Nuclear skeleton, DNA domains and control of replication and transcription. Eur. J. Biochem. 200:613–624.
  • Gilbert, D. M., H. Miyazawa, and M. L. DePamphilis. 1995. Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol. Cell. Biol. 15:2942–2954.
  • Greenfeder, S. A., and C. S. Newlon. 1992. Replication forks pause at yeast centromeres. Mol. Cell. Biol. 12:4056–4066.
  • Haber, J. E., and P. C. Thoburn. 1984. Healing of broken linear dicentric chromosomes in yeast. Genetics 106:207–226.
  • Haber, J. E., P. C. Thoburn, and D. Rogers. 1984. Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics 106:185–205.
  • Hamlin, J. L. 1992. Mammalian origins of replication. Bioessays 14:651–659.
  • Hamlin, J. L., and P. A. Dijkwel. 1995. On the nature of replication origins in higher eukaryotes. Curr. Opin. Genet. Dev. 5:153–161.
  • Hegemann, J. H., and U. N. Fleig. 1993. The centromere of budding yeast. Bioessays 15:451–460.
  • Heinzel, S. S., P. J. Krysan, C. T. Tran, and M. P. Calos. 1991. Autonomous DNA replication in human cells is affected by the size and the source of the DNA. Mol. Cell. Biol. 11:2263–2272.
  • Heus, J. J., B. J. M. Zonneveld, H. Y. de Steensma, and J. A. van den Berg. 1993. The consensus sequence of Kluyveromyces lactis centromeres show homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol. Gen. Genet. 236:355–362.
  • Heus, J. J., B. J. M. Zonneveld, H. Y. Steensma, and J. A. Vandenberg. 1994. Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae. Mol. Gen. Genet. 243:325–333.
  • Huang, R.-Y., and D. Kowalski. 1993. A DNA unwinding element and an ARS consensus comprise a replication origin within a yeast chromosome. EMBO J. 12:4521–4531.
  • Huang, R.-Y., and D. Kowalski. 1996. Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome. Nucleic Acids Res. 24:816–823.
  • Huberman, J. A. 1994. Analysis of DNA replication origins and directions by two-dimensional gel electrophoresis, p. 213–234. In P. Fantes and R. F. Brooks (ed.), The cell cycle: a practical approach. Oxford University Press, Oxford, United Kingdom.
  • Huberman, J. A., L. D. Spotila, K. A. Nawotka, S. M. El-Assouli, and L. R. Davis. 1987. The in vivo replication origin of the yeast 2 micron plasmid. Cell 51:473–481.
  • Hyrien, O., C. Maric, and M. Mechali. 1995. Transition in specification of embryonic metazoan DNA replication origins. Science 270:994–997.
  • Hyrien, O., and M. Mechali. 1992. Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis. Nucleic Acids Res. 20:1463–1469.
  • Iborra, F., and M. M. Ball. 1994. Kluyveromyces marxianus small DNA fragments contain both autonomous replicative and centromeric elements that also function in Kluyveromyces lactis. Yeast 10:1621–1629.
  • Jäger, D., and P. Philippsen. 1989. Stabilization of dicentric chromosomes in Saccharomyces cerevisiae by telomere addition to broken ends or by centromere deletion. EMBO J. 8:247–254.
  • Kirpekar, F., J. Friis, and K. Gullov. 1994. A search for an essential function of the replication origin ARS1 in the life cycle of Saccharomyces cerevisiae. Yeast 10:491–496.
  • Kramer, K. M., and J. E. Haber. 1993. New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats. Genes Dev. 7:2345–2356.
  • Krysan, P. J., J. G. Smith, and M. P. Calos. 1993. Autonomous replication in human cells of multimers of specific human and bacterial DNA sequences. Mol. Cell. Biol. 13:2688–2696.
  • Linskens, M. H. K., and J. A. Huberman. 1990. Ambiguities in results obtained with 2D gel replicon mapping techniques. Nucleic Acids Res. 18:647–652.
  • Mahbubani, H. M., T. Paull, J. K. Elder, and J. J. Blow. 1992. DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts. Nucleic Acids Res. 20:1457–1462.
  • Marahrens, Y., and B. Stillman. 1992. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823.
  • Marahrens, Y., and B. Stillman. 1994. Replicator dominance in a eukaryotic chromosome. EMBO J. 13:3395–3400.
  • Martin-Parras, L., P. Hernandez, M. L. Martinez-Robles, and J. B. Schvartzman. 1991. Unidirectional replication as visualized by two-dimensional agarose gel electrophoresis. J. Mol. Biol. 220:843–852.
  • Matsuoka, M., M. Matsubara, H. Daidoh, T. Imanaka, K. Uchida, and S. Aiba. 1993. Analysis of regions essential for the function of chromosomal replicator sequences from Yarrowia lipolytica. Mol. Gen. Genet. 237:327–333.
  • Maundrell, K., A. Hutchinson, and S. Shall. 1988. Sequence analysis of ARS elements in fission yeast. EMBO J. 7:2203–2209.
  • Nakase, T., and K. Komagata. 1971. Significance of DNA base composition in the classification of yeast genus Candida. J. Gen. Appl. Microbiol. 17:259–279.
  • Natale, D. A., R. M. Umek, and D. Kowalski. 1993. Ease of DNA unwinding is a conserved property of yeast replication origins. Nucleic Acids Res. 21:555–560.
  • Newlon, C. S., I. Collins, A. Dershowitz, A. M. Deshpande, S. A. Greenfeder, L. Y. Ong, and J. F. Theis. 1993. Analysis of replication origin function on chromosome III of Saccharomyces cerevisiae. Cold Spring Harbor Symp. Quant. Biol. 58:415–423.
  • Newlon, C. S., and J. F. Theis. 1993. The structure and function of yeast ARS elements. Curr. Opin. Genet. Dev. 3:752–758.
  • Ohkuma, M., K. Kobayashi, S. Kawai, C. W. Hwang, A. Ohta, and M. Takagi. 1995. Identification of a centromeric activity in the autonomously replicating TRA region allows improvement of the host-vector system for Candida maltosa. Mol. Gen. Genet. 249:447–455.
  • Orr-Weaver, T. L., and J. W. Szostak. 1983. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc. Natl. Acad. Sci. USA 80:4417–4421.
  • Pla, J., R. M. Perez-Diaz, F. Navarro-Garcia, M. Sanchez, and C. Nombela. 1995. Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector. Gene 165:115–120.
  • Rao, H., Y. Marahrens, and B. Stillman. 1994. Functional conservation of multiple elements in yeast chromosomal replicators. Mol. Cell. Biol. 14:7643–7651.
  • Roberge, M., and S. M. Gasser. DNA loops: structural and functional properties of scaffold-attached regions. Mol. Microbiol. 6:419–423.
  • Roggenkamp, R., H. Hansen, M. Eckart, Z. Janowicz, and C. P. Hollenberg. 1986. Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. Mol. Gen. Genet. 202:302–308.
  • Romanos, M. A., C. A. Scorer, and J. J. Clare. 1992. Foreign gene expression in yeast: a review. Yeast 8:423–448.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shinomiya, T., and S. Ina. 1994. Mapping an initiation region of DNA replication at a single-copy chromosomal locus in Drosophila melanogaster cells by two-dimensional gel methods and PCR-mediated nascent-strand analysis: multiple replication origins in a broad zone. Mol. Cell. Biol. 14:7394–7403.
  • Shirahige, K., T. Iwasaki, M. B. Rashid, N. Ogasawara, and H. Yoshikawa. 1993. Location and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:5043–5056.
  • Smith, J. G., M. S. Caddle, G. H. Bulboaca, J. G. Wohlgemuth, M. Baum, L. Clarke, and M. P. Calos. 1995. Replication of centromere II of Schizosaccharomyces pombe. Mol. Cell. Biol. 15:5165–5172.
  • Sudbery, P. E. 1994. The non-Saccharomyces yeasts. Yeast 10:1707–1726.
  • Takahashi, K., S. Murakami, Y. Chikashige, H. Funabiki, O. Niwa, and M. Yanagida. 1992. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3:819–835.
  • Theis, J. F., and C. S. Newlon. 1994. Domain B of ARS307 contains two functional elements and contributes to chromosomal replication origin function. Mol. Cell. Biol. 14:7652–7659.
  • Vernis, L. et al. Unpublished data.
  • Wohlgemuth, J. G., G. H. Bulboaca, M. Moghadam, M. S. Caddle, and M. P. Calos. 1994. Physical mapping of origins of replication in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 5:839–849.
  • Xuan, J. W., P. Fournier, and C. Gaillardin. 1988. Cloning of the LYS5 gene encoding saccharopine dehydrogenase from the yeast Y. lipolytica by targeted integration. Curr. Genet. 14:19–21.
  • Zhu, H., C. S. Newlon, and J. A. Huberman. 1992. Localization of a DNA replication origin and termination zone on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4733–4741.
  • Zhu, J. G., D. L. Carlson, D. D. Dubey, K. Sharma, and J. A. Huberman. 1994. Comparison of the two major ARS elements of the ura4 replication origin region with other ARS elements in the fission yeast, Schizosaccharomyces pombe. Chromosoma 103:414–422.
  • Zimmermann, M., and P. Fournier. 1996. Electrophoretic karyotyping of yeasts, p. 101–116. In K. Wolf (ed.), Nonconventional yeasts in biotechnology—a handbook. Springer-Verlag, Heidelberg, Germany.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.