7
Views
121
CrossRef citations to date
0
Altmetric
Research Article

Rapid Phosphorylation of Ets-2 Accompanies Mitogen-Activated Protein Kinase Activation and the Induction of Heparin-Binding Epidermal Growth Factor Gene Expression by Oncogenic Raf-1

, , , , , , , , & show all
Pages 2401-2412 | Received 01 Nov 1996, Accepted 28 Jan 1997, Published online: 29 Mar 2023

REFERENCES

  • Aaronson, S. A. 1991. Growth factors and cancer. Science 254:1146–1153.
  • Ambrosio, L., A. P. Mahowald, and N. Perrimon. 1989. Requirement of the Drosophila raf homologue for torso function. Nature 342:288–291.
  • Bishop, J. M. 1995. Cancer: the rise of the genetic paradigm. Genes Dev. 9:1309–1315.
  • Bortner, D. M., S. J. Langer, and M. C. Ostrowski. 1993. Non-nuclear oncogenes and the regulation of gene expression in transformed cells. Crit. Rev. Oncog. 4:137–160.
  • Bos, J. L. 1989. Ras oncogenes in human cancer: a review. Cancer Res. 49:4682–4689.
  • Bruder, J. T., G. Heidecker, and U. R. Rapp. 1992. Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev. 6:545–556.
  • Chang, H. C., N. M. Solomon, D. A. Wassarman, F. D. Karim, M. Therrien, G. M. Rubin, and T. Wolff. 1995. phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80:463–472.
  • Chen, X., G. Raab, U. Deutsch, J. Zhang, R. M. Ezzell, and M. Klagsbrun. 1995. Induction of heparin-binding EGF-like growth factor expression during myogenesis. Activation of the gene by MyoD and localization of the transmembrane form of the protein on the myotube surface. J. Biol. Chem. 270:18285–18294.
  • Chrivia, J. C., R. P. Kwok, N. Lamb, M. Hagiwara, M. R. Montminy, and R. H. Goodman. 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859.
  • Coffer, P., M. de Jonge, A. Mettouchi, B. Binetruy, J. Ghysdael, and W. Kruijer. 1994. junB promoter regulation: Ras mediated transactivation by c-Ets-1 and c-Ets-2. Oncogene 9:911–921.
  • Coso, O. A., M. Chiariello, J. C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. S. Gutkind. 1995. The small GTP-binding proteins Racl and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146.
  • Cowley, S., H. Paterson, P. Kemp, and C. J. Marshall. 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Derijard, B., M. Hibi, I. Wu, T. Barrett, B. Su, T. Deng, M. Karin, and R. J. Davis. 1994. JNK1: a protein kinase stimulated by UV light and Ha-ras that binds and phosphorylates the c-jun activation domain. Cell 76:1025–1037.
  • Dickson, B., and E. Hafen. 1994. Genetics of signal transduction in invertebrates. Curr. Opin. Genet. Dev. 4:64–70.
  • Dickson, B., F. Sprenger, D. Morrison, and E. Hafen. 1992. Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360:600–602.
  • Dickson, B. J., M. Domínguez, D. S. A. Van, and E. Hafen. 1995. Control of Drosophila photoreceptor cell fates by phyllopod, a novel nuclear protein acting downstream of the Raf kinase. Cell 80:453–462.
  • Egan, S. E., and R. A. Weinberg. 1993. The pathway to signal achievement. Nature 365:781–783.
  • Galang, C. K., C. J. Der, and C. A. Hauser. 1994. Oncogenic Ras can induce transcriptional activation through a variety of promoter elements, including tandem c-Ets-2 binding sites. Oncogene 9:2913–2921.
  • Galang, C. K., R. J. Garcia, P. A. Solski, J. K. Westwick, C. J. Der, N. N. Neznanov, R. G. Oshima, and C. A. Hauser. 1996. Oncogenic Neu/ErbB-2 increases ets, AP-1, and NF-kappaB-dependent gene expression, and inhibiting ets activation blocks Neu-mediated cellular transformation. J. Biol. Chem. 271:7992–7998.
  • Garcia-Ramirez, J., and C. Hauser. Unpublished observations.
  • Garrity, P. A., D. Chen, E. V. Rothenberg, and B. J. Wold. 1994. Interleu-kin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors. Mol. Cell. Biol. 14:2159–2169.
  • Garrity, P. A., and B. J. Wold. 1992. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprint-ing. Proc. Natl. Acad. Sci. USA 89:1021–1025.
  • Gille, H., T. Strahl, and P. E. Shaw. 1995. Activation of ternary complex factor Elk-1 by stress-activated protein kinases. Curr. Biol. 5:1191–1200.
  • Gotoh, Y., E. Nishida, T. Yamashita, M. Hoshi, M. Kawakami, and H. Sakai. 1990. Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Identity with the mitogen-activated MAP kinase of fibroblastic cells. Eur. J. Biochem. 193:661–669.
  • Grant, P. A., C. B. Thompson, and S. Pettersson. 1995. IgM receptor-mediated transactivation of the IgH 3′ enhancer couples a novel Elf-1-AP-1 protein complex to the developmental control of enhancer function. EMBO J. 14:4501–4513.
  • Gutman, A., and B. Wasylyk. 1990. The collagenase gene promoter contains a TPA and oncogene-responsive unit encompassing the PEA3 and AP-1 binding sites. EMBO J. 7:2241–2246.
  • Han, M., A. Golden, Y. Han, and P. W. Sternberg. 1993. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363:133–139.
  • Hauser, C. Unpublished observations.
  • Hauser, C., J. K. Westwick, and C. J. Der. 1995. Ras-mediated transcription activation: analysis by transient cotransfection assay. Methods Enzymol. 255:412–425.
  • Herskowitz, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80:187–197.
  • Hibi, M., A. Lin, T. Smeal, A. Minden, and M. Karin. 1993. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7:2135–2148.
  • Hill, C. S., R. Marais, S. John, J. Wynne, S. Dalton, and R. Treisman. 1993. Functional analysis of a growth factor-responsive transcription factor complex. Cell 73:395–406.
  • Hill, C. S., and R. Treisman. 1995. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80:199–211.
  • Hill, C. S., J. Wynne, and R. Treisman. 1995. The Rho family GTPases RhoA, Racl, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170.
  • Janknecht, R. 1996. Analysis of the ERK-stimulated transcription factor ER81. Mol. Cell. Biol. 16:1550–1556.
  • Johnson, R., B. Spiegelman, D. Hanahan, and R. Wisdom. 1996. Cellular transformation and malignancy induced by ras require c-jun. Mol. Cell. Biol. 16:4504–4511.
  • Karin, M. 1991. Signal transduction and gene control. Curr. Opin. Cell Biol. 3:467–473.
  • Karin, M. 1994. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr. Opin. Cell Biol. 6:415–424.
  • Karin, M. 1990. Transcriptional control and the integration of cell-autonomous and environmental cues during development. Curr. Opin. Cell Biol. 2:996–1002.
  • Karin, M., and T. Hunter. 1995. Transcriptional control by protein phos-phorylation: signal transmission from the cell surface to the nucleus. Curr. Biol. 5:747–757.
  • Kyriakis, J. M., P. Banerjee, E. Nikolakaki, T. Dai, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. R. Woodgett. 1994. The stress activated protein kinase subfamily of c-jun kinases. Nature 369:156–160.
  • Langer, S. J., D. M. Bortner, M. F. Roussel, C. J. Sherr, and M. C. Os-trowski. 1992. Mitogenic signaling by colony-stimulating factor 1 and ras is suppressed by the ets-2 DNA-binding domain and restored by myc overex-pression. Mol. Cell. Biol. 12:5355–5362.
  • MacNicol, A. M., A. J. Muslin, and L. T. Williams. 1993. Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell 73:571–583.
  • Mahony, D., and E. Lees. Unpublished observations.
  • Mansour, S. J., W. T. Matten, A. S. Hermann, J. M. Candia, S. Rong, K. Fukasawa, W. G. Vande, and N. G. Ahn. 1994. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970.
  • Marais, R., J. Wynne, and R. Treisman. 1993. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–394.
  • Marshall, C. J. 1994. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 4:82–89.
  • Marshall, C. J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.
  • McCarthy, S. A., M. L. Samuels, C. A. Pritchard, J. A. Abraham, and M. McMahon. 1995. Rapid induction of heparin binding epidermal growth factor/diphtheria toxin receptor by Ras and Raf oncogenes. Genes Dev. 9:1953–1964.
  • Minden, A., A. Lin, M. McMahon, C. Lange-Carter, B. Derijard, R. J. Davis, G. L. Johnson, and M. Karin. 1994. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266:1719.
  • Minden, A., A. Lin, F. X. Claret, A. Abo, and M. Karin. 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157.
  • Monte, D., L. Coutte, J. L. Baert, I. Angeli, D. Stehelin, and Y. de Launoit. 1995. Molecular characterization of the ets-related human transcription factor ER81. Oncogene 11:771–779.
  • Nishida, E., and Y. Gotoh. 1993. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18:128–131.
  • Nishida, Y., M. Hata, T. Ayaki, H. Ryo, M. Yamagata, K. Shimizu, and Y. Nishizuka. 1988. Proliferation of both somatic and germ cells is affected in the Drosophila mutants of raf proto-oncogene. EMBO J. 7:775–781.
  • O’Neill, E. M., I. Rebay, R. Tjian, and G. M. Rubin. 1994. The activities of two ets-related transcription factors required for Drosophila eye development are modulated by the ras/MAPK pathway. Cell 78:137–147.
  • Ostrowski, M. Unpublished observations.
  • Pankov, R., A. Umezawa, R. Maki, C. J. Der, C. A. Hauser, and R. G. Oshima. 1994. Oncogene activation of human keratin 18 transcription via the Ras signal transduction pathway. Proc. Natl. Acad. Sci. USA 91:873–877.
  • Parker, D., K. Ferreri, T. Nakajima, V. J. La Morte, R. Evans, S. C. Koerber, C. Hoeger, and M. R. Montminy. 1996. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16:694–703.
  • Pritchard, C. A., L. Bolin, R. Slattery, R. L. Murray, and M. McMahon. 1996. Post-natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A-Raf protein kinase. Curr. Biol. 6:614–617.
  • Rebay, I., and G. M. Rubin. 1995. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras/MAPK pathway. Cell 81:857–866.
  • Reddy, M. A., S. J. Langer, M. S. Colman, and M. C. Ostrowski. 1992. An enhancer element responsive to ras and fms signaling pathways is composed of two distinct nuclear factor binding sites. Mol. Endocrinol. 6:1051–1060.
  • Robertson, L. M., T. K. Kerppola, M. Vendrell, D. Luk, R. J. Smeyne, C. Bocchiaro, J. I. Morgan, and T. Curran. 1995. Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14:241–252.
  • Samuels, M. L., and M. McMahon. 1994. Inhibition of platelet-derived growth factor- and epidermal growth factor-mediated mitogenesis and signaling in 3T3 cells expressing delta Raf-1:ER, an estradiol-regulated form of Raf-1. Mol. Cell. Biol. 14:7855–7866.
  • Samuels, M. L., M. J. Weber, J. M. Bishop, and M. McMahon. 1993. Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human Raf-1 protein kinase. Mol. Cell. Biol. 13:6241–6252.
  • Sanchez, I., R. T. Hughes, B. J. Mayer, K. Yee, J. R. Woodgett, J. Avruch, J. M. Kyriakis, and L. I. Zon. 1994. Role of SAPK/ERK kinase-1 in the stress activated pathway regulating transcription factor c-jun. Nature 372:794–798.
  • Sgouras, D. N., M. A. Athanasiou, G. J. Seal, Jr., R. J. Fisher, D. G. Blair, and G. J. Mavrothalassitis. 1995. ERF, an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J. 14:4781–4793.
  • Stacey, K. J., L. F. Fowles, M. S. Colman, M. C. Ostrowski, and D. A. Hume. 1995. Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor. Mol. Cell. Biol. 15:3430–3441.
  • Stanton, V. P., Jr., D. W. Nichols, A. P. Laudano, and G. M. Cooper. 1989. Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol. Cell. Biol. 9:639–647.
  • Sternberg, P. W., A. Golden, and M. Han. 1993. Role of a raf proto-oncogene during Caenorhabditis elegans vulval development. Phil. Trans. R. Soc. Lond. 340:259–265.
  • Treisman, R. 1996. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8:205–215.
  • Wassarman, D. A., M. Therrien, and G. M. Rubin. 1995. The Ras signaling pathway in Drosophila. Curr. Opin. Genet. Dev. 5:44–50.
  • Wasylyk, B., S. L. Hahn, and A. Giovane. 1993. The Ets family of transcription factors. Eur. J. Biochem. 211:7–18.
  • Wasylyk, C., P. Flores, A. Gutman, and B. Wasylyk. 1989. PEA3 is a nuclear target for transcription activation by non-nuclear oncogenes. EMBO J. 8:3371–3378.
  • Wasylyk, C., A. Gutman, R. Nicholson, and B. Wasylyk. 1991. The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins. EMBO J. 10:1127–1134.
  • Wasylyk, C., S. M. Maira, P. Sobieszczuk, and B. Wasylyk. 1994. Reversion of Ras transformed cells by Ets transdominant mutants. Oncogene 9:3665–3673.
  • Wasylyk, C., B. Wasylyk, G. Heidecker, M. Huleihel, and U. R. Rapp. 1989. Expression of raf oncogenes activates the PEA1 transcription factor motif. Mol. Cell. Biol. 9:2247–2250.
  • Yang, B.-S., C. A. Hauser, G. Henkel, M. S. Colman, C. Van Beveren, K. J. Stacey, D. A. Hume, R. A. Maki, and M. C. Ostrowski. 1996. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactiva-tion activities of c-Etsl and c-Ets2. Mol. Cell. Biol. 16:538–547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.