14
Views
90
CrossRef citations to date
0
Altmetric
Research Article

Glucose Derepression of Gluconeogenic Enzymes in Saccharomyces cerevisiae Correlates with Phosphorylation of the Gene Activator Cat8p

, , &
Pages 2502-2510 | Received 21 Oct 1996, Accepted 11 Feb 1997, Published online: 29 Mar 2023

REFERENCES

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and E. Struhl (ed.). 1987-1989. Current protocols in molecular biology. John Wiley & Sons, New York, N.Y.
  • Balciunas, D., and H. Rome. 1995. Three subunits of the RNA polymerase II mediator complex are involved in glucose repression. Nucleic Acids Res. 23:4421–4425.
  • Celenza, J. L., and M. Carlson. 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180.
  • Celenza, J. L., and M. Carlson. 1989. Mutational analysis of the Saccharo-myces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9:5034–5044.
  • Cherry, J. R., T. R. Johnson, C. Dollard, J. R. Shuster, and C. L. Denis. 1989. Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56:409–419.
  • Ciriacy, M. 1975. Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADHII. Mol. Gen. Genet. 138:157–164.
  • Cismowski, M. J., G. M. Laff, M. J. Solomon, and S. I. Reed. 1995. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Mol. Cell. Biol. 15:2983–2992.
  • Dorsman, J. C., W. C. van Heeswijk, and L. A. Grivell. 1990. Yeast general transcription factor GFI: sequence requirements for binding to DNA and evolutionary conservation. Nucleic Acids Res. 18:2769–2776.
  • Entian, K.-D., and F. K. Zimmermann. 1982. New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. J. Bacteriol. 151:1123–1128.
  • Entian, K.-D., and J. A. Barnett. 1992. Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem. Sci. 17:506–510.
  • Erickson, J. R., and M. Johnston. 1993. Genetic and molecular characterization of GAL 83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae. Genetics 135:655–664.
  • Fields, S., and O. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245–246.
  • Gallwitz, D., and I. Sures. 1980. Structure of a split yeast gene: complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77:2546–2550.
  • Gancedo, C. 1971. Inactivation of fructose-1,6-bisphosphatase by glucose in yeast. J. Bacteriol. 107:401–404.
  • Gancedo, C., and N. Schwerzman. 1976. Inactivation by glucose of phos-phoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Arch. Micro-biol. 109:221–225.
  • Gancedo, J. M. 1992. Carbon catabolite repression in yeast. Eur. J. Biochem. 206:297–313.
  • Gietz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101:181–191.
  • Haarasilta, S., and E. Oura. 1975. On the activity and regulation of anaplerotic and gluconeogenetic enzymes during the growth process of baker’s yeast. Eur. J. Biochem. 52:1–7.
  • Hedges, D., M. Proft, and K.-D. Entian. 1995. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 15:1915–1922.
  • Johnston, M., and M. Carlson. 1992. Regulation of carbon and phosphate utilization, p. 193–281. In E. W. Jones, J. R. Pringle, and J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Johnston, M., J. S. Flick, and T. Pexton. 1994. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccha-romyces cerevisiae. Mol. Cell. Biol. 14:3834–3841.
  • Klebe, R. J., J. V. Harriss, D. Sharp, and M. G. Douglas. 1983. A general method for poyethylenglycol-induced transformation of bacteria and yeast. Gene 25:333–341.
  • Kuchin, S., P. Yeghiayan, and M. Carlson. 1995. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc. Natl. Acad. Sci. USA 92:4006–4010.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685.
  • Lenz, A.-G., and H. Holzer. 1980. Rapid reversible inactivation of fructose-1,6-bisphosphatase in Saccharomyces cerevisiae by glucose. FEBS Lett. 109:271–274.
  • Lesage, P., X. Yang, and M. Carlson. 1994. Analysis of the SIP3 protein identified in a two-hybrid screen for interaction with the SNF1 protein kinase. Nucleic Acids Res. 22:597–603.
  • Lesage, P., X. Yang, and M. Carlson. 1996. Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol. Cell. Biol. 16:1921–1928.
  • Lundin, M., J. O. Nehlin, and H. Ronne. 1994. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol. Cell. Biol. 14:1979–1985.
  • Lutfiyya, L. L., and M. Johnston. 1996. Two zinc-finger-containing repres-sors are responsible for glucose repression of SUC2 expression. Mol. Cell. Biol. 16:4790–4797.
  • Müller, M., H. Müller, and H. Holzer. 1981. Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharo-myces cerevisiae. J. Biol. Chem. 256:723–727.
  • Myers, A. M., A. Tzagoloff, D. M. Kinney, and C. J. Lusty. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299–310.
  • Mylin, L. M., J. P. Bhat, and J. E. Hopper. 1989. Regulated phosphorylation and dephosphorylation of Gal4, a transcriptional activator. Genes Dev. 3:1157–1165.
  • Mylin, L. M., M. Johnston, and J. E. Hopper. 1990. Phosphorylated forms of Gal4 are correlated with ability to activate transcription. Mol. Cell. Biol. 10:4623–4629.
  • Mylin, L. M., V. L. Bushman, R. M. Long, X. Yu, C. M. Lebo, T. E. Blank, and J. E. Hopper. 1994. SIP1 is a catabolite repression-specific negative regulator of GAL gene expression. Genetics 137:689–700.
  • Nehlin, J. O., and H. Ronne. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilm’s tumour finger proteins. EMBO J. 9:2891–2898.
  • Niederacher, D., and K.-D. Entian. 1987. Isolation and characterization of the regulatory HEX2 gene necessary for glucose repression in yeast. Mol. Gen. Genet. 206:505–509.
  • Niederacher, D., H.-J. Schüller, D. Grzesitza, H. Gütlich, H. P. Hauser, T. Wagner, and K.-D. Entian. 1992. Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fruc-tose-1,6-bisphosphatase. Curr. Genet. 22:363–370.
  • Proft, M. Unpublished data.
  • Proft, M., D. Grzesitza, and K.-D. Entian. 1995a. Identification and characterization of regulatory elements in the phosphoenolpyruvate carboxykinase gene PCKI of Saccharomyces cerevisiae. Mol. Gen. Genet. 246:367–373.
  • Proft, M., P. Kötter, D. Hedges, N. Bojunga, and K.-D. Entian. 1995b. CAT5, a new gene necessary for derepression of gluconeogenic enzymes in S. cerevisiae. EMBO J. 14:6116–6126.
  • Rahner, A., A. Schöler, E. Martens, B. Gollwitzer, and H.-J. Schüller. 1996. Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8. Nucleic Acids Res. 24:2331–2337.
  • Ronne, H. 1995. Glucose repression in fungi. Trends Genet. 11:12–17.
  • Sadowski, I., C. Costa, and R. Dhanawansa. 1996. Phosphorylation of Gal4p at a single C-terminal residue is necessary for galactose-inducible transcription. Mol. Cell. Biol. 16:4879–4887.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schöler, A., and H.-J. Schüller. 1994. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3613–3622.
  • Schüller, H.-J., and K.-D. Entian. 1987. Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repress-ible enzymes. Mol. Gen. Genet. 209:366–373.
  • Schüller, H.-J., A. Hahn, F. Tröster, A. Schütz, and E. Schweizer. 1992. Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. EMBO J. 11:107–114.
  • Sedivy, J. M., and D. G. Fraenkel. 1985. Fructose bisphosphatase of Saccha-romyces cerevisiae: cloning, disruption and regulation of the FBP1 structural gene. J. Mol. Biol. 186:307–319.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Silve, S., P. R. Rhode, B. Coll, J. Campell, and R. D. Poyton. 1992. ABF1 is a phosphoprotein and plays a role in carbon source control of COX6 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4197–4208.
  • Sterner, D. E., J. M. Lee, S. E. Hardin, and A. L. Greenleaf. 1995. The yeast carboxy-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Mol. Cell. Biol. 15:5716–5724.
  • Tanaka, M., and W. Herr. 1990. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphor-ylation. Cell. 60:375–386.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Tu, J., and M. Carlson. 1994. The GLC7 type1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6789–6796.
  • Yang, X., E. J. A. Hubbard, and M. Carlson. 1992. A protein kinase substrate identified by the two-hybrid system. Science 257:680–682.
  • Yang, X., R. Jiang, and M. Carlson. 1994. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. EMBO J. 13:5878–5886.
  • Zamenhoff, S. 1957. Preparation and assay of deoxyribonucleic acids animal tissue. Methods Enzymol. 3:696–704.
  • Zimmermann, F. K., I. Kaufmann, H. Rasenberger, and P. Haussmann. 1977. Genetics of carbon catabolite repression in Saccharomyces cerevisiae: genes involved in the derepression process. Mol. Gen. Genet. 151:95–103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.