13
Views
121
CrossRef citations to date
0
Altmetric
Research Article

Proteolysis by Calpains: a Possible Contribution to Degradation of p53

, , , , , , & show all
Pages 2806-2815 | Received 14 Nov 1996, Accepted 24 Jan 1997, Published online: 29 Mar 2023

REFERENCES

  • Bakalkin, G., T. Yakovleva, G. Selivanova, K. P. Magnusson, L. Szekely, E. Kiseleva, G. Klein, L. Terenius, and K. G. Wiman. 1994. P53 binds singlestranded DNA ends and catalyzes DNA denaturation and strand transfer. Proc. Natl. Acad. Sci. USA 91:413–417.
  • Bargonetti, J., J. J. Manfredi, X. Chen, D. R. Marshak, and C. Prives. 1993. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev. 7:2565–2574.
  • Bargonetti, J. P., N. Friedman, S. E. Kern, B. Vogelstein, and C. Prives. 1991. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65:1083–1091.
  • Carillo, S., M. Pariat, I. Jariel-Encontre, A.-M. Steff, F. Poulat, P. Bertha, and M. Piechaczyk. 1996. PEST motifs are not required for rapid calpain-mediated proteolysis of c-FOS protein. Biochem. J. 313:245–251.
  • Carillo, S., M. Pariat, A.-M. Steff, M. Etienne-Julan, T. Lorca, and M. Piechaczyk. 1994. Differential stability of FOS and JUN family members to calpains. Oncogene 9:1679–1689.
  • Carillo, S., M. Pariat, A.-M. Steff, P. Roux, M. Etienne-Julan, T. Lorca, and M. Piechaczyk. 1994. Differential sensitivity of FOS and JUN family members to calpains. Oncogene 9:1679–1689.
  • Chin, K. V., K. Ueda, I. Pastan, and M. M. Gottesman. 1992. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255:459–462.
  • Chiu, R., W. Boyle, J. Meek, T. Smeal, T. Hunter, and M. Karin. 1988. The c-fos protein interacts with c-jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54:541–552.
  • Chowdary, D. R., J. J. Dermody, K. K. Jha, and H. L. Ozer. 1994. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol. Cell. Biol. 14:1997–2003.
  • Ciechanover, A., D. Shkedy, M. Oren, and B. Bercovich. 1994. Degradation of the tumor suppressor protein p53 by the ubiquitin-mediated proteolytic system requires a novel species of ubiquitin-carrier protein, E2. J. Biol. Chem. 269:9582–9589.
  • Croall, D. E., and G. N. DeMartino. 1991. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol. Rev. 71:813–847.
  • Delphin, C., P. Cahen, J. J. Lawrence, and J. Baudier. 1994. Characterization of baculovirus recombinant wild-type p53. Eur. J. Biochem. 223:683–692.
  • Donehower, L. A., and A. Bradley. 1993. The tumor suppressor gene p53. Biochim. Biophys. Acta 1155:181–205.
  • Dulic, V., W. K. Kaufmann, S. J. Wilson, T. D. Tlsty, E. Lees, J. W. Harper, S. J. Elledge, and S. I. Reed. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023.
  • El-Deiry, W. S., S. E. Kinzler, J. A. Pietenpol, K. W. Kinzler, and B. Vo-gelstein. 1992. Definition of a consensus binding site for p53. Nat. Genet. 1:45–49.
  • El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Farmer, G., J. Bargonetti, H. Zhu, P. Friedman, R. Priwes, and C. Prives. 1992. Wild-type p53 activates transcription in vitro. Nature 358:83–86.
  • Fields, S., and S. K. Jang. 1990. Wild-type p53 activates transcription in vitro. Science 249:1046–1049.
  • Fujiwara, T., D. W. Cai, R. N. Georges, T. Mukhopadhyay, A. A. Grimm, and J. A. Roth. 1994. Therapeutical effect of a retroviral wild-type vector in an orthotopic lung cancer model. J. Natl. Cancer Inst. 86:1458–1462.
  • Funk, W. D., D. T. Pak, R. H. Karas, W. E. Wright, and J. W. Shay. 1992. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12:2866–2871.
  • Ginsberg, D., F. Mechta, M. Yaniv, and M. Oren. 1991. Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl. Acad. Sci. USA 88:9979–9983.
  • Goldberg, A. L., and K. Rock. 1992. Proteolysis, proteasome and antigen presentation. Nature 357:375–379.
  • Greenblatt, M. S., W. P. Bennett, M. Hollstein, and C. C. Harris. 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855–4878.
  • Gronostajski, R. M., A. L. Goldberg, and A. B. Pardee. 1984. Energy requirement for degradation of tumor-associated protein p53. Mol. Cell. Biol. 4:442–448.
  • Hershko, A., and A. Ciechanover. 1992. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61:761–807.
  • Hirai, S., H. Kawasaki, M. Yaniv, and K. Suzuki. 1991. Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS Lett. 287:57–61.
  • Jennissen, H. P. 1995. Ubiquitin and the enigma of intracellular protein degradation. Eur. J. Biochem. 231:1–30.
  • Kastan, M. B., Q. Zhan, W. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telan-giectasia. Cell 71:587–597.
  • Kern, S. E., K. W. Kinzler, A. Brudskin, D. Jarosz, P. Friedman, C. Prives, and B. Vogelstein. 1991. Identification of p53 as a sequence-specific DNA- binding protein. Science 252:1708–1711.
  • Kern, S. E., J. A. Pietenpol, S. Thiagalingam, A. Seymour, K. W. Kinzler, and B. Vogelstein. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 249:827–830.
  • Kinzler, K. W., and B. Vogelstein. 1996. Life (and death) in a malignant tumor. Nature 379:19–20.
  • Ko, J. K., and C. Prives. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Kubbutat, M. H. G., and K. H. Vousden. 1997. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol. Cell. Biol. 17:460–468.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Lane, R. D., D. M. Allan, and R. Mellgren. 1992. A comparison of the intracellular distribution of micro-calpain, milli-calpain and calpastatin in proliferating human A431 cells. Exp. Cell Res. 203:5–16.
  • Legros, Y., V. Lacabanne, M. F. D’agay, C. J. Larsen, M. Pla, and T. Soussi. 1993. Isolation of human p53 specific monoclonal antibodies and their use in immunohistochemical studies of tumor cells. Bull. Fr. Cancer 80:102–110.
  • Leveillard, T., L. Andrea, N. Bissonnette, L. Scheffer, L. Bracco, J. M. Egly, and B. Wasylyk. 1996. Functional alterations between p53 and the TFIIH complex are affected by tumor-associated. EMBO J. 15:1615–1624.
  • Maki, C. G., J. Huibregtse, and P. Howley. 1996. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res. 56:2649–2654.
  • Maki, M., H. Bagci, K. Hamaguchi, M. Ueda, T. Murachi, and M. Hatanaka. 1989. Inhibition of calpain by a synthetic oligopeptide corresponding to an exon of the human calpastatin gene. J. Biol. Chem. 254:18866–18869.
  • Masuda, H., C. Miller, H. P. Koeffler, H. Battifora, and M. T. Cline. 1987. Rearrangement of the p53 gene in human osteogenic sarcoma. Proc. Natl. Acad. Sci. USA 84:7716–7719.
  • Medcalf, E. A., T. Takahashi, I. Chiba, J. Minna, and J. Milner. 1992. Temperature-sensitive mutants of p53 associated with human carcinoma of the lung. Oncogene 7:71–76.
  • Mellgren, R. L. 1991. Proteolysis of nuclear proteins by mu-calpain and m-calpain. J. Biol. Chem. 266:13920–13924.
  • Mellgren, R. L., and Q. Lu. 1994. Selective nuclear transport of micro-calpain. Biochem. Biophys. Res. Commun. 204:544–550.
  • Mellgren, R. L., K. Song, and M. T. Mericle. 1993. m-calpain requires DNA for activity on nuclear proteins at low calcium concentrations. J. Biol. Chem. 268:653–657.
  • Michalovitz, D., O. Haley, and M. Oren. 1990. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62:671–681.
  • Milner, J. 1995. Flexibility: the key to p53 function? Trends Biochem. Sci. 20:49–51.
  • Milner, J. 1994. Forms and functions of p53. Cancer Biol. 5:211–219.
  • Milner, J., Y. S. Chan, E. A. Medcalf, Y. Wand, and W. Eckhardt. 1993. Partially transformed T3T3 cells express high levels of mutant p53 in the “wild-type” immunoreactive form with defective oligomerization. Oncogene 8:2001–2008.
  • Milner, J., and E. A. Medcalf. 1990. Temperature-dependent switching between “wild-type” and “mutant” forms of p53-Val135. J. Mol. Biol. 216:481–484.
  • Molinari, M., and J. Milner. 1995. p53 in complex with DNA is resistant to ubiquitin-dependent proteolysis in the presence of HPV-16 E6. Oncogene 10:1849–1854.
  • Mosner, J., T. Mummenbrauer, C. Bauer, G. Sczakiel, F. Grosse, and W. Deppert. 1995. Negative feedback regulation of wild-type p53 biosynthesis. EMBO J. 14:4442–4449.
  • Okamoto, K., and D. Beach. 1994. Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13:4816–4822.
  • Oren, M. 1992. p53: the ultimate tumor suppressor gene? FASEB J. 6:3169–3176.
  • Oren, M. 1994. Relationship of p53 to the control of apoptotic cell death. Semin. Cancer Biol. 5:221–227.
  • Pavletich, N., K. A. Chambers, and C. O. Pabo. 1993. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot-spots. Genes Dev. 7:2556–2564.
  • Raycroft, L., H. Wu, and G. Lozano. 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051.
  • Rolley, N., S. Butcher, and J. Milner. 1995. Specific DNA binding by different classes of human p53 mutants. Oncogene 11:763–770.
  • Rolley, N., and T. Milner. Unpublished data.
  • Saido, T. C., H. Sorimachi, and K. Suzuki. 1994. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 8:814–822.
  • Salvat, C., I. Jariel-Encontre, M. Pariat, C. Acquaviva, I. Robbins, and M. Piechaczyk. Regulation of transcription factor activity by proteolysis in eu-caryotic cells, in press. Research Signpost, Trivandrum, India.
  • Scheffner, M., J. M. Huibregtse, and P. M. Howley. 1994. Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc. Natl. Acad. Sci. USA 91:8797–8801.
  • Scheffner, M., U. Nuber, and J. M. Huibregtse. 1995. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83.
  • Scheffner, M., B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. Howley. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136.
  • Schweghoffer, F., I. Barlat, M. C. Chevallier-Multon, and B. Tocqúe. 1992. Implication of GAP in ras-dependent transactivation of a Polyoma enhancer sequence. Science 256:825–827.
  • Shkedy, D., H. Gonen, B. Bercovich, and A. Ciechanover. 1994. Complete reconstitution of conjugation and subsequent degradation of the tumor suppressor protein p53 by purified components of the ubiquitin proteolytic system. FEBS Lett. 348:126–130.
  • Sturges, M. R., and L. J. Peck. 1994. Calcium-dependent inactivation of RNA polymerase III transcription. J. Biol. Chem. 269:5712–5719.
  • Sturzbecher, H. W., B. Donzelmann, W. Henning, U. Knippschild, and S. Buchhop. 1996. p53 is linked to homologous recombination processes via RAD51/RecA protein interaction. EMBO J. 15:1992–2002.
  • Subler, M. A., D. W. Martin, and S. Deb. 1992. Inhibition of viral and cellular promoters by human wild-type p53. J. Virol. 66:4757–4762.
  • Ueba, T., T. Nosaka, J. A. Takahashi, F. Shibata, R. Z. Florkiewicz, B. Vogelstein, Y. Oda, H. Kikuchi, and M. Hatanaka. 1994. Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblas-toma and hepatocellular carcinoma cells. Proc. Natl. Acad. Sci. USA 91:9009–9013.
  • Unger, T., M. M. Nau, S. Segal, and J. D. Minna. 1992. p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J. 11:1383–1390.
  • Wang, K. K. W. 1990. Developing selective inhibitors of calpains. Trends Biochem. Sci. 11:139–142.
  • Watt, F., and P. L. Molloy. 1993. Specific cleavage of transcription factors by the thiol protease, m-calpain. Nucleic Acids Res. 21:5092–5100.
  • Yamato, K., M. Yamamoto, Y. Hirano, and N. Tsuchida. 1995. A human temperature sensitive mutant p53-Val138: modulation of the cell cycle, viability and expression of p53-responsive genes. Oncogene 11:1–6.
  • Zambetti, G. P., and A. J. Levine. 1993. A comparison of the wild-type and mutant p53. FASEB J. 7:855–865.
  • Zerrahn, J., W. Deppert, D. Weidemann, T. Patschinsky, F. Richards, and J. Milner. 1992. Correlation between the conformational phenotype of p53 and its subcellular location. Oncogene 7:1371–1381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.