4
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the Receptor Binding Domain of Gpa1p, the Gα Subunit Involved in the Yeast Pheromone Response Pathway

&
Pages 2897-2907 | Received 20 Jun 1996, Accepted 11 Feb 1997, Published online: 29 Mar 2023

REFERENCES

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1989. Current protocols in molecular biology, p. 13.6.1–13.6.4. John Wiley & Sons, Inc., New York, N.Y.
  • Bender, A., and G. F. Sprague, Jr. 1986. Yeast peptide pheromones, a-factor and a-factor, activate a common response mechanism in their target cells. Cell 47:929–937.
  • Blinder, D., S. Bouvier, and D. D. Jenness. 1989. Constitutive mutants in the yeast pheromone response: ordered function of the gene products. Cell 56:479–486.
  • Burkholder, A. C., and L. H. Hartwell. 1985. The yeast a-factor receptor: structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res. 13:8463–8475.
  • Cadwell, R. C., and G. F. Joyce. 1992. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2:28–33.
  • Cerione, R. A., S. Kroll, R. Rajaram, C. Unson, P. Goldsmith, and A. M. Spiegel. 1988. An antibody directed against the carboxyl-terminal decapep-tide of the a subunit of the retinal GTP-binding protein, transducin. J. Biol. Chem. 263:9345–9352.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122.
  • Coleman, D. E., A. M. Berghuis, E. Lee, M. E. Linder, A. G. Gilman, and S. R. Sprang. 1994. Structures of active conformation of Giα1 and the mechanism of GTP hydrolysis. Science 265:1405–1412.
  • Conklin, B. R., and H. R. Bourne. 1993. Structural elements of Ga subunits that interact with Gβγ, receptors, and effectors. Cell 73:631–641.
  • Conklin, B. R., Z. Farfel, K. D. Lustig, D. Julius, and H. R. Bourne. 1993. Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363:274–276.
  • Cunningham, B. C., and J. A. Wells. 1989. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244:1081–1085.
  • Denker, B. M., C. J. Schmidt, and E. J. Neer. 1992. Promotion of the GTP-liganded state of the Goα protein by deletion of the C terminus. J. Biol. Chem. 267:9998–10002.
  • Dietzel, C., and J. Kurjan. 1987. The yeast SCG1 gene: a Ga-like protein implicated in the a- and a-factor response pathway. Cell 50:1001–1010.
  • Dietzel, C., and J. Kurjan. 1987. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to phero-mone. Mol. Cell. Biol. 7:4169–4177.
  • Ditzelmuller, G., W. Wohrer, C. P. Kubicek, and M. Rohr. 1983. Nucleotide pools of growing, synchronized and stressed cultures of Saccharomyces cerevisiae. Arch. Microbiol. 135:63–67.
  • Dratz, E. A., J. E. Furstenau, C. G. Lambert, D. L. Thireault, H. Rarick, T. Schepers, S. Pakhlevaniants, and H. E. Hamm. 1993. NMR structure of a receptor-bound G-protein peptide. Nature 363:276–281.
  • Elion, E. A., J. A. Brill, and G. R. Fink. 1991. FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc. Natl. Acad. Sci. USA 88:9392–9396.
  • Feig, L. A., and G. M. Cooper. 1988. Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins. Mol. Cell. Biol. 8:2472–2478.
  • Garcia, P. D., R. Onrust, S. M. Bell, T. P. Sakmar, and H. R. Bourne. 1995. Transducin-a C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells. EMBO J. 14:4460–4469.
  • Haga, T., E. M. Ross, H. J. Anderson, and A. G. Gilman. 1977. Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells. Proc. Natl. Acad. Sci. USA 74:2016–2020.
  • Hagen, D. C., G. McCaffrey, and G. F. Sprague, Jr. 1986. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc. Natl. Acad. Sci. USA 83:1418–1422.
  • Hamm, H. E., D. Deretic, A. Arendt, P. A. Hargrave, B. Koenig, and K. P. Hofmann. 1988. Site of G protein binding to rhodopsin mapped with synthetic peptides from the a subunit. Science 241:832–835.
  • Hamm, H. E., D. Deretic, K. P. Hofmann, A. Schleicher, and B. Kohl. 1987. Mechanism of action of monoclonal antibodies that block the light activation of the guanyl nucleotide-binding protein, transducin. J. Biol. Chem. 262:10831–10838.
  • Hirsch, J. P., C. Dietzel, and J. Kurjan. 1991. The carboxyl terminus of Scg1, the Ga subunit involved in yeast mating, is implicated in interactions with the pheromone receptors. Genes Dev. 5:467–474.
  • Hwang, Y. W., M. Carter, and D. L. Miller. 1992. The identification of a domain in Escherichia coli elongation factor Tu that interacts with elongation factor Ts. J. Biol. Chem. 267:22198–22205.
  • Iiri, T., P. Herzmark, J. M. Nakamoto, C. Van Dop, and H. R. Bourne. 1994. Rapid GDP release from Gsα in patients with gain and loss of endocrine function. Nature 371:164–168.
  • Jahng, K.-Y., J. Ferguson, and S. I. Reed. 1988. Mutations in a gene encoding the a subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling. Mol. Cell. Biol. 8:2484–2493.
  • Konopka, J. B., and D. D. Jenness. 1991. Genetic fine-structural analysis of the Saccharomyces cerevisiae a-factor receptor. Cell Regul. 2:439–452.
  • Konopka, J. B., D. D. Jenness, and L. H. Hartwell. 1988. The C-terminus of the Saccharomyces cerevisiae a-pheromone receptor mediates an adaptive response to pheromone. Cell 54:609–618.
  • Kurjan, J. 1993. The pheromone response pathway in Saccharomyces cerevisiae. Annu. Rev. Genet. 27:147–179.
  • Kurjan, J., J. P. Hirsch, and C. Dietzel. 1991. Mutations in the guanine nucleotide-binding domains of a yeast Ga protein confer a constitutive or uninducible state to the pheromone response pathway. Genes Dev. 5:475–483.
  • Lambright, D. G., J. P. Noel, H. E. Hamm, and P. B. Sigler. 1994. Structural determinants for activation of the a-subunit of a heterotrimeric G protein. Nature 369:621–628.
  • Lichtarge, O., H. R. Bourne, and F. E. Cohen. 1996. Evolutionarily conserved Gαβγ binding surfaces support a model of the G protein-receptor complex. Proc. Natl. Acad. Sci. USA 93:7507–7511.
  • Lichtarge, O., H. R. Bourne, and F. E. Cohen. 1996. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257:342–358.
  • Martin, E. L., S. Rens-Domiano, P. J. Schatz, and H. E. Hamm. 1996. Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J. Biol. Chem. 271:361–366.
  • Miyajima, I., M. Nakafuku, N. Nakayama, C. Brenner, A. Miyajima, K. Kaibuchi, K. Arai, Y. Kaziro, and K. Matsumoto. 1987. GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell 50:1011–1019.
  • Nakafuku, M., H. Itoh, S. Nakamura, and Y. Kaziro. 1987. Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the a subunit of mammalian G proteins. Proc. Natl. Acad. Sci. USA 84:2140–2144.
  • Nakayama, N., Y. Kaziro, K.-I. Arai, and K. Matsumoto. 1988. Role of STE genes in the mating-factor signaling pathway mediated by GPA1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:3777–3783.
  • Nakayama, N., A. Miyajima, and K. Arai. 1985. Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J. 4:2643–2648.
  • Nakayama, N., A. Miyajima, and K. Arai. 1987. Common signal transduction system shared by STE2 and STE3 in haploid cells of Saccharomyces cerevisiae: autocrine cell-cycle arrest results from forced expression of STE2. EMBO J. 6:249–254.
  • Noel, J. P., H. E. Hamm, and P. B. Sigler. 1993. The 2.2 Å crystal structure of transducin-a complexed with GTPγS. Nature 366:654–663.
  • Onrust, R., P. Herzmark, P. Chi, P. D. Garcia, O. Lichtarge, C. Kingsley, and H. R. Bourne. 1997. Receptor and βγ binding sites in the a subunit of the retinal G protein transducin. Science 275:381–384.
  • Osawa, S., and E. R. Weiss. 1995. The effect of carboxyl-terminal mutagenesis of Gtα on rhodopsin and guanine nucleotide binding. J. Biol. Chem. 270:31052–31058.
  • Palm, D., G. Munch, D. Malek, C. Dees, and M. Hekman. 1990. Identification of a Gs-protein coupling domain to the β-adrenoceptor using site-specific synthetic peptides. Carboxyl terminus of Gsα is involved in coupling to beta-adrenoceptors. FEBS Lett. 261:294–298.
  • Rall, T., and B. A. Harris. 1987. Identification of the lesion in the stimulatory GTP-binding protein of the uncoupled S49 lymphoma. FEBS Lett. 224:365–371.
  • Rasenick, M. M., M. Watanabe, M. B. Lazarevic, S. Hatta, and H. E. Hamm. 1994. Synthetic peptides as probes for G protein function. Carboxyl-terminal Gαs peptides mimic Gs and evoke high affinity agonist binding to β-adren-ergic receptors. J. Biol. Chem. 269:21519–21525.
  • Rens-Domiano, S., and H. E. Hamm. 1995. Structural and functional relationships of heterotrimeric G-proteins. FASEB J. 9:1059–1066.
  • Sadhu, C., D. Hoekstra, M. J. McEachern, S. I. Reed, and J. B. Hicks. 1992. A G-protein α subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-α2 repressor. Mol. Cell. Biol. 12:1977–1985.
  • Schwindinger, W. F., A. Miric, D. Zimmerman, and M. A. Levine. 1994. A novel Gsα mutant in a patient with Albright hereditary osteodystrophy uncouples cell surfaces receptors from adenylyl cyclase. J. Biol. Chem. 269:25387–25391.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Simonds, W. F., P. K. Goldsmith, J. Codina, C. G. Unson, and A. M. Spiegel. 1989. Gi2 mediates α2-adrenergic inhibition of adenylyl cyclase in platelet membranes: in situ identification with Gα C-terminal antibodies. Proc. Natl. Acad. Sci. USA 86:7809–7813.
  • Spiegel, A. M. 1994. Specificity of receptor-effector coupling by G proteins, p. 66–74. In A. M. Spiegel, T. L. Z. Jones, W. F. Simonds, and L. S. Weinstein (ed.), G proteins. R. G. Landes Co., Austin, Tex.
  • Sprague, G. F., Jr., R. Jensen, and I. Herskowitz. 1983. Control of yeast cell type by the mating type locus: positive regulation of the a-specific STE3 gene by the MATα1 product. Cell 32:409–415.
  • Stone, D. E., and S. I. Reed. 1990. G protein mutations that alter the pheromone response in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:4439–4446.
  • Sullivan, K. A., R. T. Miller, S. B. Masters, B. Beiderman, W. Heideman, and H. R. Bourne. 1987. Identification of receptor contact site involved in recep-tor-G protein coupling. Nature 330:758–760.
  • Thomas, T. C., C. J. Schmidt, and E. J. Neer. 1993. G-protein αo subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proc. Natl. Acad. Sci. USA 90:10295–10298.
  • Trueheart, J., J. D. Boeke, and G. R. Fink. 1987. Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol. Cell. Biol. 7:2316–2328.
  • Van Dop, C., G. Yamanaka, F. Steinberg, R. D. Sekura, C. R. Manclark, L. Stryer, and H. R. Bourne. 1984. ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J. Biol. Chem. 259:23–26.
  • Wall, M. A., D. E. Coleman, E. Lee, J. A. Iniguez-Lluhi, B. A. Posner, A. G. Gilman, and S. R. Sprang. 1995. The structure of the G protein heterotrimer Giα1β1γ2. Cell 83:1047–1058.
  • Watson, S., and S. Arkinstall. 1994. The G-protein linked receptor facts book. Academic Press, London, England.
  • Whiteway, M., L. Hougan, D. Dignard, D. Y. Thomas, L. Bell, G. C. Saari, F. J. Grant, P. O’Hara, and V. L. MacKay. 1989. The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56:467–477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.