2
Views
35
CrossRef citations to date
0
Altmetric
Research Article

The Signal Response of IκBα Is Regulated by Transferable N- and C-Terminal Domains

, , , , , , & show all
Pages 3021-3027 | Received 30 Jul 1996, Accepted 28 Feb 1997, Published online: 29 Mar 2023

REFERENCES

  • Alkalay, I., A. Yaron, A. Hatzubai, A. Orian, A. Ciechanover, and Y. Ben-Neriah. 1995. Stimulation-dependent IκBα phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 92:10599–10603.
  • Aoki, T., Y. Sano, T. Yamamoto, and J.-I. Inoue. 1996. The ankyrin repeats but not the PEST-like sequences are required for signal-dependent degradation of IκBα. Oncogene 12:1159–1164.
  • Baeuerle, P. A., and T. Henkel. 1994. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12:141–179.
  • Baldi, L., K. Brown, G. Franzoso, and U. Siebenlist. 1996. Critical role for lysines 21 and 22 in signal-induced ubiquitin-mediated proteolysis of IκBα. J. Biol. Chem. 271:376–379.
  • Baldwin, A. S. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683.
  • Barroga, C. F., J. K. Stevenson, E. M. Schwarz, and I. M. Verma. 1995. Constitutive phosphorylation of IκBα by casein kinase II. Proc. Natl. Acad. Sci. USA 92:7637–7641.
  • Beg, A. A., S. M. Ruben, R. I. Scheinman, S. Haskill, C. A. Rosen, and A. S. Baldwin. 1992. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6:1899–1913.
  • Beg, A. A., T. S. Finco, P. V. Nantermet, and A. S. Baldwin, Jr. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: a mechanism for NF-κB activation. Mol. Cell. Biol. 13:3301–3310.
  • Bours, V., G. Franzoso, V. Azarenko, S. Park, T. Kanno, K. Brown, and U. Siebenlist. 1993. The oncoprotein Bcl-3 directly transactivates through κB motifs via association with DNA-binding p50B homodimers. Cell 72:729–739.
  • Bours, V., P. R. Burd, K. Brown, J. Villalobos, S. Park, R.-P. Ryseck, R. Bravo, K. Kelly, and U. Siebenlist. 1992. A novel mitogen-inducible gene product related to p50/p105-NF-κB participates in transactivation through a κB site. Mol. Cell. Biol. 12:685–695.
  • Boyle, W.J., P. van der Geer, and T. Hunter. 1991. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201:101–149.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and D. W. Ballard. 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15:2809–2818.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1491.
  • Brown, K., S. Park, T. Kanno, G. Franzoso, and U. Siebenlist. 1993. Mutual regulation of the transcriptional activator NF-κB and its inhibitor, IκBα. Proc. Natl. Acad. Sci. USA 90:2532–2536.
  • Chen, Z., J. Hagler, V. J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets IκB to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597.
  • Chen, Z., L. Parent, and T. Maniatis. 1996. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862.
  • Cordle, S. R., R. Donald, M. A. Read, and J. Hawiger. 1993. Lipopolysaccharide induces phosphorylation of MAD-3 and activation of c-Rel and related NF-κB proteins in human monocytic THP-1 cells. J. Biol. Chem. 268:11803–11810.
  • DiDonato, J., F. Mercurio, C. Rosette, J. Wu-Li, H. Suyang, S. Ghosh, and M. Karin. 1996. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16:1295–1304.
  • Franzoso, G., V. Bours, V. Azarenko, S. Park, M. Tomita-Yamaguchi, T. Kanno, K. Brown, and U. Siebenlist. 1993. The oncoprotein Bcl-3 can facilitate NF-κB-mediated transactivation by removing inhibiting p50 homodimers from select κB sites. EMBO J. 12:3893–3901.
  • Franzoso, G., V. Bours, V. Azarenko, S. Park, M. Tomita-Yamaguchi, T. Kanno, K. Brown, and U. Siebenlist. 1992. The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-κB-mediated inhibition. Nature 359:339–342.
  • Fuchs, S. Y., L. Dolan, R. J. Davis, and Z. Ronai. 1996. Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene 13:1531–1535.
  • Ganchi, P., S.-C. Sun, W. C. Greene, and D. W. Ballard. 1992. IκB/MAD-3 masks the nuclear localization signal of NF-κB p65 and requires the transactivation domain to inhibit NF-κB p65 DNA binding. Mol. Biol. Cell. 3:1339–1352.
  • Haskill, S., A. A. Beg, S. M. Tompkins, J. S. Morris, A. D. Yurochko, A. Sampson-Johannes, K. Mondal, P. Ralph, and A. S. Baldwin. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes IκB-like activity. Cell 65:1281–1289.
  • Henkel, T., U. Zabel, K. van Zee, J. M. Muller, E. Fanning, and P. A. Baeuerle. 1992. Intramolecular masking of the nuclear localization signal and dimerization domain in the precursor for the p50 NF-κB subunit. Cell 68:1121–1133.
  • Israel, D., and R. J. Kaufman. 1989. Highly inducible expression from vectors containing multiple GRE’s in CHO cells overexpressing the glucocorticoid receptor. Nucleic Acids Res 17:4589–4604.
  • Jaffray, E., K. M. Wood, and R. T. Hay. 1995. Domain organization of IκB-α and sites of interaction with NF-κB p65. Mol. Cell. Biol. 15:2166–2172.
  • King, R. W., R. J. Deshaies, J.-M. Peters, and M. W. Kirschner. 1996. How proteolysis drives the cell cycle. Science 274:1652–1658.
  • Krappmann, D., F. G. Wulczyn, and C. Scheidereit. 1996. Different mechanisms control signal-induced degradation and basal turnover of the NF-κB inhibitor IκBα in vivo. EMBO J. 15:6716–6726.
  • Lin, R., P. Beauparlant, C. Makris, S. Meloche, and J. Hiscott. 1996. Phosphorylation of IκBα in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol. Cell. Biol. 16:1401–1409.
  • Lin, W.-C., and S. Desiderio. 1993. Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science 260:953–959.
  • Lin, Y.-C., K. Brown, and U. Siebenlist. 1995. Activation of NF-κB requires proteolysis of the inhibitor IκBα: signal-induced phosphorylation of IκBα alone does not release active NF-κB. Proc. Natl. Acad. Sci. USA 92:3003–3009.
  • McElhinny, J. A., S. A. Trushin, G. D. Bren, N. Chester, and C. V. Paya. 1996. Casein kinase II phosphorylates IκBα at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol. Cell. Biol. 16:899–906.
  • Ohno, H., G. Takimoto, and T. W. McKeithan. 1990. The candidate protooncogene, bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 60:991–997.
  • Rodriguez, M., J. Wright, J. Thompson, D. Thomas, F. Baleux, J. L. Virelizier, R. T. Hay, and F. Arenzana-Seisedos. 1996. Identification of lysine residues required for signal-induced ubiquitination and degradation of IκBα in vivo. Oncogene 12:2425–2435.
  • Roff, M., J. Thompson, M. S. Rodriguez, J.-M. Jacque, F. Baleux, F. Arenzana-Seisdedos, and R. T. Hay. 1996. Role of IκBα ubiquitination in signal-induced activation of NF-κB in vivo. J. Biol. Chem. 271:7844–7850.
  • Rogers, S., R. Wells, and M. Rechsteiner. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368.
  • Schuägger, H., and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166:368–379.
  • Scherer, D. C., J. A. Brockman, Z. J. Chen, T. Maniatis, and D. Ballard. 1995. Signal-induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–11263.
  • Schwarz, E. M., D. van Antwerp, and I. M. Verma. 1996. Constitutive phosphorylation of IκBα by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IκBα. Mol. Cell. Biol. 16:3554–3559.
  • Siebenlist, U., G. Franzoso, and K. Brown. 1994. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10:405–455.
  • Siegel, J. N. 1992. Preparation and analysis of phosphorylated proteins, p. 11.2.1–11.2.17. In J. A. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, and W. Strober (ed.), Current protocols in immunology. John Wiley and Sons, New York, N.Y.
  • Sun, S.-C., P. A. Ganchi, D. W. Ballard, and W. C. Greene. 1993. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259:1912–1915.
  • Sun, S.-C., J. Elwood, and W. C. Greene. 1996. Both amino- and carboxyterminal sequences within IκBα regulate its inducible degradation. Mol. Cell. Biol. 16:1058–1065.
  • Traenckner, E. B., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and P. A. Baeuerle. 1995. Phosphorylation of human IκBα on serines 32 and 36 controls IκB activation in response to diverse stimuli. EMBO J. 14:2876–2883.
  • Traenckner, E. B., S. Wilk, and P. A. Baeuerle. 1994. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκBα that is still bound to NF-κB. EMBO J. 13:5433–5441.
  • Van Antwerp, D. J., and I. M. Verma. 1996. Signal-induced degradation of IκBα: association with NF-κB and the PEST sequence in IκBα are not required. Mol. Cell. Biol. 16:6037–6045.
  • Whiteside, S. T., M. K. Ernst, O. LeBail, C. Laurent-Winter, N. Rice, and A. Israel. 1995. N- and C-terminal sequences control degradation of MAD3/ IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15:5339–5345.
  • Wulczyn, F. G., M. Naumann, and C. Scheidereit. 1992. Candidate protooncogene bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-κB. Nature 358:597–599.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.