14
Views
111
CrossRef citations to date
0
Altmetric
Research Article

A Lesion in the DNA Replication Initiation Factor Mcm10 Induces Pausing of Elongation Forks through Chromosomal Replication Origins in Saccharomyces cerevisiae

, , , &
Pages 3261-3271 | Received 31 Oct 1996, Accepted 10 Mar 1997, Published online: 29 Mar 2023

REFERENCES

  • Althoefer, H., A. Schleiffer, K. Wassmann, A. Nordheim, and G. Ammerer. 1995. Mcm1 is required to coordinate G2-specific transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:5917–5928.
  • Bell, S., and B. Stillman. 1992. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134.
  • Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast:5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Brewer, B. J., and W. L. Fangman. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Brewer, B. J., and W. L. Fangman. 1988. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643.
  • Chen, Y. 1993. Ph.D. dissertation. Cornell University, Ithaca, N.Y.
  • Chen, Y., K. M. Hennessy, D. Botstein, and B. K. Tye. 1992. CDC46/MCM5, a yeast protein whose subcellular localization is cell-cycle regulated, is in volved in DNA replication at ARSs. Proc. Natl. Acad. Sci. USA 89:10459–10463.
  • Chong, J., H. M. Mahbubani, C. Y. Khoo, and J. J. Blow. 1995. Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375:418–421.
  • Chong, J. P., P. Thommes, and J. J. Blow. 1995. The role of MCM/P1 proteins in the licensing of DNA replication. Trends Biochem. Sci. 21:102–106.
  • Dershowitz, A., and C. S. Newlon. 1993. The effect on chromosome stability of deleting replication origins. Mol. Cell. Biol. 10:391–398.
  • Deshpande, A. M., and C. S. Newlon. 1992. The ARS consensus sequence is required for chromosomal origin function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4305–4313.
  • Deshpande, A. M., and C. S. Newlon. 1996. DNA replication fork pause sites dependent on transcription. Science 272:1030–1033.
  • Diffley, J. F. X., J. H. Cocker, S. J. Dowell, and A. Rowley. 1994. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78:303–316.
  • Dijkwel, P. A., J. P. Vaughn, and J. L. Hamlin. 1991. Mapping of replication initiation sites in mammalian genomes by two-dimensional gel analysis: stabilization and enrichment of replication intermediates by isolation on the nuclear matrix. Mol. Cell. Biol. 11:3850–3859.
  • Elble, R. 1992. A simple and efficient procedure for transformation of yeasts. BioTechniques 13:18–20.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Ferguson, B. M., B. J. Brewer, A. E. Reynolds, and W. L. Fangman. 1991. A yeast replication origin is activated late in S phase. Cell 65:507–515.
  • Fields, S., and O. K. Song. 1989. A novel genetic system to detect protein-protein interaction. Proc. Natl. Acad. Sci. USA 340:245–246.
  • Fox, C. A., S. Loo, A. Dillin, and J. Rine. 1995. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev. 9:911–924.
  • Gavin, K. A., M. Hidaka, and B. Stillman. 1995. Conserved initiator proteins in eukaryotes. Science 270:1667–1671.
  • Gibson, S. I., R. T. Surosky, and B. K. Tye. 1990. The phenotype of the minichromosome mutant mcm3 is characteristic of mutants defective in DNA replication. Mol. Cell. Biol. 10:5707–5720.
  • Gossen, M., D. T. S. Pak, S. K. Hansen, J. K. Acharya, and M. R. Botchan. 1995. A Drosophila homolog of the yeast origin recognition complex. Science 270:1674–1677.
  • Greenfeder, S. A., and C. S. Newlon. 1992. Replication forks pause at yeast centromeres. Mol. Cell. Biol. 12:4056–4066.
  • Guthrie, C., and G. R. Fink (ed.). 1991. Methods in enzymology, vol. 194. Guide to yeast genetics and molecular biology. Academic Press, Inc., San Diego, Calif.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hennessy, K. M., A. Lee, E. Chen, and D. Botstein. 1991. A group of interacting yeast DNA replication genes. Genes Dev. 5:958–969.
  • Hutter, K. J., and H. E. Eipel. 1978. Flow cytometric determinations of cellular substances in algae, bacteria, molds and yeasts. Antonie Leeuwenhoek J. Microbiol. Serol. 44:269–282.
  • Kawasaki, Y., and B. K. Tye. Unpublished results.
  • Kearsey, S. E., D. Maiorano, E. C. Holmes, and I. Todorov. 1995. The role of MCM proteins in the control of genome duplication. Bioessays 18:183–189.
  • Kilmartin, J. V., and A. E. M. Adams. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98:922–933.
  • Kobayashi, T., M. Hidaka, M. Nishizawa, and T. Horiuchi. 1992. Identification of a site required for DNA replication fork blocking activity in the rDNA gene cluster in Saccharomyces cerevisiae. Mol. Gen. Genet. 233:355–362.
  • Koonin, E. V. 1993. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21:2541–2547.
  • Kornberg, A., and T. A. Baker. 1992. DNA replication, 2nd ed. W. H. Freeman and Co., New York, N.Y.
  • Kubota, Y., S. Mimura, S.-I. Nishimoto, H. Takisawa, and H. Nojima. 1995. Identification of the yeast MCM3-related protein as a component of Xenopus DNA replication licensing factor. Cell 81:601–610.
  • Lei, M., Y. Kawasaki, and B. K. Tye. 1996. Physical interactions among Mcm proteins and effects of Mcm dosage on DNA replication in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:5081–5090.
  • Liang, C., M. Weinreich, and B. Stillman. 1995. ORC and Cdc6p interact and determine the frequency of initiation ofDNA replication in the genome. Cell 81:667–676.
  • Linskens, M. H., and J. A. Huberman. 1988. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4927–4935.
  • Madine, M. A., C.-Y. Khoo, A. D. Mills, and R. A. Laskey. 1995. MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells. Nature 375:421–424.
  • Maine, G. T., P. Sinha, and B.-K. Tye. 1984. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106:365–385.
  • Maiorano, D., G. B. van Assendelft, and S. E. Kearsey. 1996. Fission yeast cdc21, a member of the MCM protein family, is required for onset of Sphase and is located in the nucleus throughout the cell cycle. EMBO J. 15:861–872.
  • Marahrens, Y., and B. Stillman. 1992. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–822.
  • Moir, D., and D. Botstein. 1982. Determination of the order of gene function in the yeast nuclear division pathway using cs and ts mutants. Genetics 100:565–577.
  • Moir, D., S. E. Stewart, B. C. Osmond, and D. Botstein. 1982. Cold-sensitive cell-division-cycle mutants of yeast: properties and pseudoreversion studies. Genetics 100:547–564.
  • Osman, M. 1996. Ph.D. dissertation. Cornell University, Ithaca, N.Y.
  • Passmore, S., R. Elble, and B. K. Tye. 1989. A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes Dev. 3:921–935.
  • Passmore, S., G. T. Maine, R. Elble, C. Christ, and B. K. Tye. 1988. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATa cells. J. Mol. Biol. 204:593–606.
  • Rhode, P. R., S. Elsasser, and J. L. Campbell. 1992. Role of multifunctional autonomously replicating sequence factor 1 in the initiation of DNA replication and transcriptional control of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1064–1077.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Solomon, N. A., M. B. Wright, S. Chang, A. M. Buckley, L. B. Dumas, and R. F. Gaber. 1992. Genetic and molecular analysis of DNA43 and DNA52: two new cell-cycle genes in Saccharomyces cerevisiae. Yeast 8:273–289.
  • Takahashi, K., H. Yamada, and M. Yanagida. 1994. Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol. Biol. Cell 5:1145–1158.
  • Treisman, J. E., P. J. Follette, P. H. O’Farrell, and G. M. Rubin. 1995. Cell proliferation and DNA replication defects in a Drosophila MCM2 mutant. Genes Dev. 9:1709–1715.
  • Tye, B. K. 1994. The Mcm2-3-5 proteins: are they replication licensing factors? Trends Cell Biol. 4:160–166.
  • Walker, S. S., A. K. Malik, and S. Eisenberg. 1991. Analysis of the interactions of functional domains of a nuclear origin of replication from Saccharomyces cerevisiae. Nucleic Acids Res. 19:6255–6262.
  • Yan, H., S. Gibson, and B. K. Tye. 1991. Mcm2 and Mcm3, two proteins important for ARS activity, are related in structure and function. Genes Dev. 5:944–957.
  • Yan, H., A. M. Merchant, and B.-K. Tye. 1993. Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 7:2149–2160.
  • Young, M., and B. K. Tye. Mcm2 and Mcm3 are constitutive nuclear proteins which exhibit distinct isoforms during specific cell cycle stages and in defined subcellular locations in S. cerevisiae. Submitted for publication.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.