2
Views
29
CrossRef citations to date
0
Altmetric
Research Article

The Centromere Enhancer Mediates Centromere Activation in Schizosaccharomyces pombe

&
Pages 3305-3314 | Received 16 Dec 1996, Accepted 10 Mar 1997, Published online: 29 Mar 2023

REFERENCES

  • Baum, M., V. K. Ngan, and L. Clarke. 1994. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Biol. Cell. 5:747–761.
  • Beach, D. H., and A. J. S. Klar. 1984. Rearrangements of the transposable mating-type cassettes of fission yeast. EMBO J. 3:603–610.
  • Bram, R. J., and R. D. Kornberg. 1987. Isolation of a Saccharomyces cerevi- siae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol. Cell. Biol. 7:403–409.
  • Cambareri, E., R. Aisner, and J. Carbon. Personal communication.
  • Chen, R.-H., J. C. Waters, E. D. Salmon, and A. W. Murray. 1996. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274:242–246.
  • Chikashige, Y., N. Kinoshita, Y. Nakaseko, T. Matsumoto, S. Murakami, O. Niwa, and M. Yanagida. 1989. Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of Not I restriction sites. Cell 57:739–751.
  • Clarke, L., H. Amstutz, B. Fishel, and J. Carbon. 1986. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 83:8253–8257.
  • Clarke, L., and M. Baum. 1990. Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol. Cell. Biol. 10:1863–1872.
  • Clarke, L., M. Baum, L. G. Marschall, V. K. Ngan, and N. C. Steiner. 1993. Structure and function of Schizosaccharomyces pombe centromeres. Cold Spring Harbor Symp. Quant. Biol. 58:687–695.
  • Cumberledge, S., and J. Carbon. 1987. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203–212.
  • Dernburg, A. F., J. W. Sedat, and R. S. Hawley. 1996. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86:135–146.
  • Ding, R., K. L. McDonald, and J. R. McIntosh. 1993. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120:141–151.
  • Earnshaw, W. C., and C. A. Cooke. 1989. Proteins of the inner and outer centromere of mitotic chromosomes. Genome 31:541–552.
  • Earnshaw, W. C., H. Ratrie III, and G. Stetten. 1989. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98:1–12.
  • Fishel, B., H. Amstutz, M. Baum, J. Carbon, and L. Clarke. 1988. Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol. Cell. Biol. 8:754–763.
  • Gutz, H., H. Heslot, U. Leupold, and N. Loprieno. 1974. Schizosaccharomyces pombe, p. 395–446. In R. D. King (ed.), Handbook of genetics. Plenum Publishing Corp., New York, N.Y.
  • Haaf, T., P. E. Warburton, and H. F. Willard. 1992. Integration of human α-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70:681–696.
  • Hahnenberger, K. M., J. Carbon, and L. Clarke. 1991. Identification ofDNA regions required for mitotic and meiotic functions within the centromere of Schizosaccharomyces pombe chromosome I. Mol. Cell. Biol. 11:2206–2215.
  • Halverson, D., M. Baum, J. Stryker, J. Carbon, and L. Clarke. 1997. A centromere DNA-binding protein from fission yeast affects chromosome segregation and has homology to human CENP-B. J. Cell Biol. 136:487–500.
  • Karpen, G. H., M.-H. Le, and H. Le. 1996. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273:118–122.
  • Le, M.-H., D. Duricka, and G. H. Karpen. 1995. Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics 141:283–303.
  • Lechner, J., and J. Carbon. 1991. A 240 kD multisubunit protein complex (CBF3) is a major component of the budding yeast centromere. Cell 64:717–725.
  • Marschall, L. G., and L. Clarke. 1995. A novel cis-acting centromeric DNA element affects S. pombe centromeric chromatin structure at a distance. J. Cell Biol. 128:445–454.
  • Masumoto, H., H. Masukata, Y. Muro, N. Nozaki, and T. Okazaki. 1989. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109:1963–1973.
  • Middleton, K., and J. Carbon. 1994. KAR3-encoded kinesin is a minus-end-directed motor that functions with centromere binding protein (CBF3) on an in vitro yeast kinetochore. Proc. Natl. Acad. Sci. USA 91:7212–7216.
  • Miklos, G. L. G. 1985. Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes, p. 241–313. In J. R. MacIntyre (ed.), Molecular evolutionary genetics. Plenum Publishing Corp., New York, N.Y.
  • Moreno, S., A. Klar, and P. Nurse. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194:795–823.
  • Moroi, Y., C. Peebles, M. J. Fritzler, J. Steigerwald, and E. M. Tan. 1980. Autoantibody to centromere (kinetochore) in scleroderma sera. Proc. Natl. Acad. Sci. USA 77:1627–1631.
  • Murakami, S., T. Matsumoto, O. Niwa, and M. Yanagida. 1991. Structure of the fission yeast centromere cen3: direct analysis of the reiterated inverted region. Chromosoma 101:214–221.
  • Murakami, Y., J. A. Huberman, and J. Hurwitz. 1996. Identification, purification, and molecular cloning of autonomously replicating sequence-binding protein 1 from fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 93:502–507.
  • Muro, Y., H. Masumoto, K. Yoda, N. Nozaki, M. Ohashi, and T. Okazaki. 1992. Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box. J. Cell Biol. 116:585–596.
  • Murphy, T. D., and G. H. Karpen. 1995. Localization of centromere function in a Drosophila minichromosome. Cell 82:599–609.
  • Nakaseko, Y., Y. Adachi, S. Funahashi, O. Niwa, and M. Yanagida. 1986. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 5:1011–1021.
  • Ngan, V., and L. Clarke. Unpublished data.
  • Page, S. L., W. C. Earnshaw, K. H. Choo, and L. G. Shaffer. 1995. Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X;15) with simultaneous immunofluorescence and FISH. Hum. Mol. Genet. 4:289–294.
  • Palmer, D. K., K. O’Day, and R. L. Margolis. 1990. The centromere-specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100:32–36.
  • Pluta, A. F., A. M. Mackay, A. M. Ainsztein, I. G. Goldberg, and W. C. Earnshaw. 1995. The centromere: hub of chromosomal activities. Science 270:1591–1594.
  • Rieder, C. L., R. W. Cole, A. Khodjakov, and G. Sluder. 1995. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130:941–948.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sears, D. D., J. H. Hegemann, J. H. Shero, and P. Hieter. 1995. Cis-acting determinants affecting centromere function, sister-chromatid cohesion, and reciprocal recombination during meiosis in Saccharomyces cerevisiae. Genetics 139:1159–1173.
  • Singer, M. 1982. Highly repeated sequences in mammalian genomes. Int. Rev. Cytol. 76:67–112.
  • Smit, A.F., and A. D. Riggs. 1996. Tiggers and DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93:1443–1448.
  • Sorger, P. K., G. Ammerer, and D. Shore. 1989. Identification and purification of sequence-specific DNA-binding proteins, p. 199–223. In T. E. Creighton (ed.), Protein function: a practical approach. IRL Press, Oxford, England.
  • Steiner, N. C., and L. Clarke. 1994. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79:865–874.
  • Steiner, N. C., K. M. Hahnenberger, and L. Clarke. 1993. Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol. Cell Biol. 13:4578–4587.
  • Stemmann, O., and J. Lechner. 1996. The Saccharomyces cerevisiae kinetochore contains a cyclin-CDK complexing homologue, as identified by in vitro reconstitution. EMBO J. 15:3611–3620.
  • Takahashi, K., S. Murakami, Y. Chikashige, H. Funabiki, O. Niwa, and M. Yanagida. 1992. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3:819–835.
  • Tjian, R., and T. Maniatis. 1994. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77:5–8.
  • Tudor, M., M. Lobocka, M. Goodell, J. Pettitt, and K. O’Hare. 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232:126–134.
  • Wevrick, R., W. C. Earnshaw, P. N. Howard-Peebles, and H. F. Willard. 1990. Partial deletion of alpha satellite DNA associated with reduced amounts of the centromere protein CENP-B in a mitotically stable human chromosome rearrangement. Mol. Cell. Biol. 10:6374–6380.
  • Wordeman, L., and T. J. Mitchison. 1995. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protien that associates with centromeres during mitosis. J. Cell Biol. 128:95–104.
  • Yen, T. J., G. Li, B. T. Schaar, I. Szilak, and D. W. Cleveland. 1992. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359:536–539.
  • Zinkowski, R. P., J. Meyne, and B. R. Brinkley. 1991. The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol. 113:1091–1110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.