9
Views
246
CrossRef citations to date
0
Altmetric
Research Article

Cdc42 Regulates Anchorage-Independent Growth and Is Necessary for Ras Transformation

, , &
Pages 3449-3458 | Received 20 Dec 1996, Accepted 20 Mar 1997, Published online: 29 Mar 2023

REFERENCES

  • Aspenstrom, P., U. Lindberg, and A. Hall. 1996. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr. Biol. 6:70–75.
  • Avraham, H., and R. A. Weinberg. 1989. Characterization and expression of the human rhoH12 gene product. Mol. Cell. Biol. 9:2058–2066.
  • Boguski, M. S., and F. McCormick. 1993. Proteins regulating Ras and its relatives. Nature 366:643–654.
  • Cantor, S. B., T. Urano, and L. Feig. 1995. Identification and characterization of Ral-binding protein-1, a potential downstream target of Ral GT-Pases. Mol. Cell. Biol. 15:4578–4584.
  • Chant, J., and L. Stowers. 1995. GTPase cascades choreographing cellular behavior: movement, morphogenesis and more. Cell 81:1–4.
  • Chou, M. M., and J. Blenis. 1996. The 70kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Rac1. Cell 85:573–583.
  • Coso, O. A., M. Chiariello, J.-C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. S. Gutkind. 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signalling pathway. Cell 81:1137–1146.
  • Cowley, S., H. Paterson, P. Kemp, and C. J. Marshall. 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Crompton, A., and M. Symons. Unpublished observations.
  • Evan, G. I., G. K. Lewis, G. Ramsey, and J. M. Bishop. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610–3616.
  • Frisch, S. M., K. Vuori, E. Ruoslahti, and P.-Y. Chan-Hui. 1996. Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell Biol. 134:793–799.
  • Hall, A. 1994. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu. Rev. Cell Biol. 10:31–54.
  • Hart, M. J., A. Eva, D. Zangrilli, S. A. Aaronson, T. Evans, R. A. Cerione, and Y. Zheng. 1994. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain of the dbl oncogene product. J. Biol. Chem. 269:62–65.
  • Hildebrand, J. D., J. M. Taylor, and J. T. Parsons. 1996. An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol. Cell. Biol. 16:3169–3178.
  • Hill, C. S., J. Wynne, and R. Treisman. 1995. The Rho family GTPases RhoA, Rac1 and CDC42hs regulate transcriptional activation by SRF. Cell 81:1159–1170.
  • Hofer, F., S. Fields, C. Schneider, and G. S. Martin. 1994. Activated Ras interacts with the Ral guanine-nucleotide dissociation stimulator. Proc. Natl. Acad. Sci. USA 91:11089–11093.
  • Joneson, T., M. McDonough, D. Bar-Sagi, and L. Van Aelst. 1996. Rac regulation of actin polymerization by a pathway distinct from jun kinase. Science 274:1374–1376.
  • Joneson, T., M. A. White, M. H. Wigler, and D. Bar-Sagi. 1996. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of Ras. Science 271:810–812.
  • Jullien-Flores, V., O. Dorseuil, F. Romero, F. Letourneur, S. Saragosti, R. Berger, A. Tavitian, G. Gacon, and J. H. Camonis. 1995. Bridging Ral GTPase to Rho pathways: rlip76, a Ral effector with Cdc42/Rac GTPase-activating protein activity. J. Biol. Chem. 270:22473–22477.
  • Khosravi-Far, R., P. A. Solski, G. J. Clark, M. S. Kinch, and C. J. Der. 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15:6443–6453.
  • Khosravi-Far, R., M. A. White, J. K. Westwick, P. A. Solski, M. Chrzanowska-Wodnicka, L. Van Aelst, M. H. Wigler, and C. J. Der. 1996. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16:3923–3933.
  • Kikuchi, A., S. D. Demo, Z. H. Ye, Y. W. Chen, and L. T. Williams. 1994. Ral-GDS family members interact with the effector loop of Ras p21. Mol. Cell. Biol. 14:7483–7491.
  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229–241.
  • Kozma, R., S. Ahmed, A. Best, and L. Lim. 1996. The GTPase-activating protein n-chimaerin cooperates with Rac1 and Cdc42Hs to induce the formation of lamellipodia and filopodia. Mol. Cell. Biol. 16:5069–5080.
  • Kozma, R., S. Ahmed, A. Best, and L. Lim. 1995. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15:1942–1952.
  • Lamarche, N., N. Tapon, L. Stowers, P. D. Burbelo, P. Aspenström, T. Bridges, J. Chant, and A. Hall. 1996. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87:519–529.
  • Leevers, S. J., H. F. Paterson, and C. J. Marshall. 1994. Requirement for Ras in Raf activation is overcome by targetting Raf to the plasma membrane. Nature 369:411–414.
  • Machesky, L. M., and H. Alan. 1996. Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol. 6:304–310.
  • Marshall, C. J. 1996. Ras effectors. Curr. Opin. Cell Biol. 8:197–204.
  • Minden, A., A. Lin, F.-X. Claret, A. Abo, and M. Karin. 1995. Selective activation of the JNK signalling pathway and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157.
  • Nobes, C. D., and A. Hall. 1995. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81:53–62.
  • O’Hagan, R. C., R. G. Tozer, M. Symons, F. McCormick, and J. A. Hassell. 1996. The activity of the Ets transcription factor PEA3 is regulated by two distinct MAPK cascades. Oncogene 13:1323–1333.
  • Olson, M. F., A. Ashworth, and A. Hall. 1995. An essentialrole for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269:1270–1272.
  • Park, S. H., and R. A. Weinberg. 1995. A putative effector of Ral has homology to Rho/Rac GTPase-activating proteins. Oncogene 11:2349–2355.
  • Peppelenbosch, M. P., R.-G. Qiu, A. M. M. de Vries-Smits, L. G. J. Tertoolen, S. W. de Laat, F. McCormick, A. Hall, M. H. Symons, and J. L. Bos. 1995. Rac mediates growth factor-induced arachidonic acid release. Cell 81:849–856.
  • Perona, R., P. Esteve, B. Jimenez, R. P. Ballestro, S. Ramon y Cajal, and J. C. Lacal. 1993. Tumorigenic activity of rho genes from Aplysia californica. Oncogene 8:1285–1292.
  • Prendergast, G. C., R. Khosravi-Far, P. A. Solski, H. Kurzawa, P. F. Lebowitz, and C. J. Der. 1995. Critical role for Rho in cell transformation by oncogenic Ras. Oncogene 10:2289–2296.
  • Qiu, R.-G., J. Chen, D. Kirn, F. McCormick, and M. Symons. 1995. An essential role for Rac in Ras transformation. Nature 374:457–459.
  • Qiu, R.-G., J. Chen, F. McCormick, and M. Symons. 1995. A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92:11781–11785.
  • Ridley, A. J. 1996. Rho: theme and variations. Curr. Biol. 6:1256–1264.
  • Ridley, A. J., and A. Hall. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399.
  • Ridley, A. J., H. F. Paterson, C. L. Johnston, D. Diekman, and A. Hall. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.
  • Rubinfeld, B., B. Souza, I. Albert, O. Muller, S. H. Chamberlain, F. Masiarz, S. Munemitsu, and P. Polakis. 1993. Association of the APC gene product with B-catenin. Science 262:1731–1734.
  • Schwartz, M. A., D. Toksoz, and R. Khosravi-Far. 1996. Transformation by Rho exchange factor oncogenes is mediated by activation of an integrin-dependent pathway. EMBO J. 15:6525–6530.
  • Self, A. J., H. F. Paterson, and A. Hall. 1993. Different structural organization of Ras and Rho effector domains. Oncogene 8:655–661.
  • Southern, P. J., and P. Berg. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–341.
  • Spaargaren, M., and J. R. Bischoff. 1994. Identification of the guanine-nucleotide dissociation stimulator for Ral as a putative effector molecule of R-Ras, H-Ras, K-Ras, and Rap. Proc. Natl. Acad. Sci. USA 91:12609–12613.
  • Stokoe, D., S. G. Macdonald, K. Cadwallader, M. Symons, and J. F. Hancock. 1994. Activation of raf as a result of recruitment to the plasma membrane. Science 264:1463–1467.
  • Symons, M. 1995. The Rac and Rho pathways as a source of drug targets for Ras-mediated malignancies. Curr. Opin. Biotechnol. 6:668–674.
  • Symons, M. 1996. Rho family GTPases: the cytoskeleton and beyond. Trends Biol. Sci. 21:178–181.
  • Symons, M., J. M. J. Derry, B. Karlak, S. Jiang, V. Lemahieu, F. McCormick, U. Francke, and A. Abo. 1996. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase Cdc42Hs, is implicated in actin polymerization. Cell 84:723–734.
  • Urano, T., R. Emkey, and L. A. Feig. 1996. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 15:810–816.
  • Westwick, J. K., Q. T. Lambert, G. J. Clark, M. Symons, L. V. Aelst, R. G. Pestell, and C. J. Der. 1997. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17:1324–1335.
  • White, M. A., C. Nicolette, A. Minden, A. Polverino, L. Van Aelst, M. Karin, and M. H. Wigler. 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80:533–541.
  • White, M. A., T. Vale, J. H. Camonis, E. Schaefer, and M. H. Wigler. 1996. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J. Biol. Chem. 271:16439–16442.
  • Wolthuis, R. M., B. Bauer, L. J. van’t Veer, A. de Vries-Smits, R. H. Cool, M. Spaargaren, A. Wittinghofer, B. M. Burgering, and J. L. Bos. 1996. RalGDS-like factor (Rlf) is a novel Ras and Rap 1A-associating protein. Oncogene 13:353–362.
  • Zheng, Y., M. F. Olson, A. Hall, R. A. Cerione, and D. Toksoz. 1995. Direct involvement of the small GTP-binding protein Rho in lbc oncogene function. J. Biol. Chem. 270:9031–9034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.