19
Views
139
CrossRef citations to date
0
Altmetric
Research Article

RNA Recognition by the Human Polyadenylation Factor CstF

&
Pages 3907-3914 | Received 13 Mar 1997, Accepted 24 Apr 1997, Published online: 29 Mar 2023

REFERENCES

  • Bardwell, V. J., M. Wickens, S. Bienroth, W. Keller, B. S. Sproat, and A. I. Lamond. 1991. Site-directed ribose methylation identifies 29-OH groups in polyadenylation substrates critical for AAUAAA recognition and poly(A) addition. Cell 65:125–133.
  • Bienroth, S., E. Wahle, C. Sulter-Crazzolara, and W. Keller. 1991. Purification of the cleavage and polyadenylation factor involved in the 3′-processing of mRNA precursors. J. Biol. Chem. 266:19768–19776.
  • Chanfreau, G., S. M. Noble, and C. Guthrie. 1996. Essential yeast protein with unexpected similarity to subunits of mammalian cleavage and polyadenylation specificity factor (CPSF). Science 274:1511–1514.
  • Chen, J., and C. Moore. 1992. Separation of factors required for cleavage and polyadenylation of yeast pre-mRNA. Mol. Cell. Biol. 12:3470–3481.
  • Chou, Z.-F., F. Chen, and J. Wilusz. 1994. Sequence and position requirements for uridylate-rich downstream elements of polyadenylation signals. Nucleic Acids Res. 22:2525–2531.
  • Christofori, G., and W. Keller. 1988. 3′ cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell 54:875–889.
  • Gilmartin, G. M., and J. R. Nevins. 1989. An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 3:2180–2189.
  • Gilmartin, G. M., and J. R. Nevins. 1991. Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol. Cell. Biol. 11:2432–2438.
  • Gilmartin, G. M., E. S. Fleming, J. Oetjen, and B. R. Graveley. 1995. CPSF recognition of an HIV-1 mRNA 3′-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev. 9:72–83.
  • Guo, Z., and F. Sherman. 1996. 3′-end-forming signals of yeast mRNA. Trends Biochem. Sci. 21:477–481.
  • Jenny, A., H.-P. Hauri, and W. Keller. 1994. Characterization of cleavage and polyadenylation specificity factor and cloning of its 100-kilodalton subunit. Mol. Cell. Biol. 14:8183–8190.
  • Jenny, A., and W. Keller. 1995. Cloning of cDNAs encoding the 160kDa subunit of the bovine cleavage and polyadenylation specificity factor. Nucleic Acids Res. 23:2629–2635.
  • Jenny, A., L. Minvielle-Sebastia, P. J. Preker, and W. Keller. 1996. Sequence similarity between the 73-kilodalton protein of mammalian CPSF and a subunit of yeast polyadenylation factor I. Science 274:1514–1517.
  • Keller, W. 1995. No end yet to messenger RNA 3′ processing! Cell 81:829–832.
  • Keller, W., S. Bienroth, K. M. Lang, and G. Christofori. 1991. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3′ processing signal AAUAAA. EMBO J. 10:4241–4249.
  • Lutz, C. S., and J. C. Alwine. 1994. Direct interaction of the U1 snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Dev. 8:576–586.
  • Lutz, C. S., K. G. K. Murthy, N. Schek, J. P. O’Connor, J. L. Manley, and J. C. Alwine. 1996. Interaction between the U1 snRNP-A protein and the 160kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev. 10:325–337.
  • MacDonald, C. C., J. Wilusz, and T. Shenk. 1994. The 64-kDa subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol. Cell. Biol. 14:6647–6654.
  • Manley, J. L. 1995. A complex protein assembly catalyzes polyadenylation of mRNA precursors. Curr. Opin. Genet. Dev. 5:222–228.
  • Manley, J. L., and Y. Takagaki. 1996. The end of the message—another link between yeast and mammals. Science 274:1481–1482.
  • McDevitt, M. A., R. P. Hart, W. W. Wong, and J. R. Nevins. 1986. Sequences capable of restoring poly(A) site function define two distinct downstream elements. EMBO J. 5:2907–2913.
  • Minvielle-Sebastia, L., B. Winsor, N. Bonneaud, and F. Lacroute. 1991. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol. Cell. Biol. 11:3075–3087.
  • Minvielle-Sebastia, L., P. J. Preker, and W. Keller. 1994. RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3′-end processing factor. Science 266:1702–1705.
  • Murthy, K. G. K., and J. L. Manley. 1992. Characterization of the multisubunit cleavage polyadenylation specificity factor from calf thymus. J. Biol. Chem. 267:14804–14811.
  • Murthy, K. G. K., and J. L. Manley. 1995. The 160kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Dev. 9:2672–2683.
  • Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444–2448.
  • Proudfoot, N. 1991. Poly(A) signals. Cell 64:671–674.
  • Ryner, L. C., Y. Takagaki, and J. L. Manley. 1989. Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly. Mol. Cell. Biol. 9:1759–1771.
  • Ryner, L. C., Y. Takagaki, and J. L. Manley. 1989. Multiple forms of poly(A) polymerases purified from HeLa cells function in specific mRNA 3′-end formation. Mol. Cell. Biol. 9:4229–4238.
  • Skolnik-David, H., C. L. Moore, and P. A. Sharp. 1987. Electrophoretic separation of polyadenylation-specific complexes. Genes Dev. 1:672–682.
  • Smith, D. B., K. M. Davern, P. G. Board, W. U. Tiu, E. G. Garcia, and G. F. Mitchell. 1986. Mr 26,000 antigen of Schistosoma japonicum recognized by resistant WEHI 129/J mice is a parasite glutathione S-transferase. Proc. Natl. Acad. Sci. USA 83:8703–8707.
  • Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40.
  • Stumpf, G., and H. Domdey. 1996. Dependence of yeast pre-mRNA 3′-end processing on CFT1: a sequence homolog of the mammalian AAUAAA binding factor. Science 274:1517–1520.
  • Tacke, R., and J. L. Manley. 1995. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14:3540–3551.
  • Takagaki, Y., L. C. Ryner, and J. L. Manley. 1989. Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev. 3:1711–1724.
  • Takagaki, Y., J. L. Manley, C. C. MacDonald, J. Wilusz, and T. Shenk. 1990. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 4:2112–2120.
  • Takagaki, Y., C. C. MacDonald, T. Shenk, and J. L. Manley. 1992. The human 64-kDa polyadenylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs. Proc. Natl. Acad. Sci. USA 89:1403–1407.
  • Takagaki, Y., and J. L. Manley. 1992. A human polyadenylation factor is a G protein β-subunit homologue. J. Biol. Chem. 267:23471–23474.
  • Takagaki, Y., and J. L. Manley. 1994. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 372:471–474.
  • Takagaki, Y., R. L. Seipelt, M. L. Peterson, and J. L. Manley. 1996. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87:941–952.
  • Tsai, D. E., D. S. Harper, and J. D. Keene. 1991. U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res. 19:4931–4936.
  • Tuerk, C., and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.
  • Wahle, E., and W. Keller. 1996. The biochemistry of polyadenylation. Trends Biochem. Sci. 21:247–250.
  • Wilusz, J., and T. Shenk. 1988. A 64kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell 52:221–228.
  • Wilusz, J., T. Shenk, Y. Takagaki, and J. L. Manley. 1990. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates. Mol. Cell. Biol. 10:1244–1248.
  • Wilusz, J., and T. Shenk. 1990. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol. Cell. Biol. 10:6397–6407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.