7
Views
16
CrossRef citations to date
0
Altmetric
Research Article

τ4/τc/AF-2 of the Thyroid Hormone Receptor Relieves Silencing of the Retinoic Acid Receptor Silencer Core Independent of Both τ4 Activation Function and Full Dissociation of Corepressors

, &
Pages 4259-4271 | Received 27 Jan 1997, Accepted 15 May 1997, Published online: 29 Mar 2023

REFERENCES

  • Allan, G. F., S. Y. Tsai, M.-J. Tsai, and B. W. O’Malley. 1992. Liganddependent conformational changes in the progesterone receptor are necessary for events that follow DNA binding. Proc. Natl. Acad. Sci. USA 89:11750–11754.
  • Allan, G. F., E. Lombardi, D. Haynes-Johnson, S. Palmer, M. Kiddoe, P. Kraft, C. Campen, P. Rybczynski, D. W. Combs, and A. Phillips. 1996. Induction of a novel conformation in the progesterone receptor by ZK299 involves a defined region of the carboxyl-terminal tail. Mol. Endocrinol. 10:1206–1213.
  • Baniahmad, A., C. Steiner, A. C. Köhne, and R. Renkawitz. 1990. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell 61:505–514.
  • Baniahmad, A., A. C. Köhne, and R. Renkawitz. 1992. A transferable silencing domain is present in the thyroid hormone receptor, in the v-erb A oncogene product and in the retinoic acid receptor. EMBO J. 11:1015–1023.
  • Baniahmad, A., I. Ha, D. Reinberg, S. Tsai, M.-J. Tsai, and B. W. O’Malley. 1993. Interaction of human thyroid hormone receptor b with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc. Natl. Acad. Sci. USA 90:8832–8836.
  • Baniahmad, A., M. Eggert, and R. Renkawitz. In A. G. Papavassiliou (ed.), Transcription factors in eucaryotes, in press. Landes Company, CRC Press, Austin, Tex.
  • Baniahmad, A., T. P. Burris, and M.-J. Tsai. 1994. The nuclear hormone receptor superfamily, p. 1–24. In M.-J. Tsai and B. W. O’Malley (ed.), Mechanism of steroid hormone regulation of gene transcription. Landes Company, CRC Press, Austin, Tex.
  • Baniahmad, A., X. Leng, T. P. Burris, S. Y. Tsai, M.-J. Tsai, and B. W. O’Malley. 1995. The t4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 15:76–86.
  • Barettino, D., M. D. M. V. Ruiz, and H. G. Stunnenberg. 1994. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13:3039–3049.
  • Beato, M., P. Herrlich, and G. Schütz. 1995. Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857.
  • Beck-Peccoz, P., V. K. K. Chatterjee, W. W. Chin, L. J. DeGroot, J. L. Jameson, H. Nakamura, S. Refetoff, S. J. Usala, and B. D. Weintraub. 1994. Nomenclature of thyroid hormone receptor b-gene mutations in resistance to thyroid hormone: consensus statement from the first workshop on thyroid hormone resistance, July 10-11, 1993, Cambridge, United Kingdom. J. Clin. Endocrinol. Metab. 78:990–993.
  • Beekman, J. M., G. F. Allan, S. Y. Tsai, M.-J. Tsai, and B. W. O’Malley. 1993. Transcriptional activation by the estrogen receptor requires a conformational change in the ligand binding domain. Mol. Endocrinol. 7:1266–1274.
  • Bhat, M. K., P. McPhie, Y.-T. Ting, Xu-Guang Zhu, and Sheueyann Cheng. 1995. Structure of the carboxy-terminal region of thyroid hormone nuclear receptors and its possible role in hormone-dependent intermolecular interactions. Biochemistry 34:10591–10599.
  • Bourguet, W., M. Ruff, P. Chambon, H. Gronemeyer, and D. Moras. 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-a. Nature 375:377–382.
  • Casanova, J., E. Helmer, S. Selmi-Ruby, J.-S. Qi, M. Au-Fliegner, V. Desai-Yajnik, N. Koudinova, F. Yarm, B. M. Raaka, and H. H. Samuels. 1994. Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor. Mol. Cell. Biol. 14:5756–5765.
  • Cavailles, V., S. Davois, F. L. Horset, G. Lopez, S. Hoare, P. J. Kushner, and M. G. Parker. 1995. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14:3741–3751.
  • Chen, J. D., and R. M. Evans. 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.
  • Damm, K., C. C. Thompson, and R. M. Evans. 1989. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339:593–597.
  • Damm, K., R. A. Heyman, K. Umesong, and R. M. Evans. 1993. Functional inhibition of retinoic acid response by dominant negative retinoic acid receptor mutants. Proc. Natl. Acad. Sci. USA 90:2989–2993.
  • Danielian, P. S., R. White, J. A. Lees, and M. G. Parker. 1992. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11:1025–1033.
  • Durand, B., M. Saunders, C. Gaudon, B. Roy, R. Losson, and P. Chambon. 1994. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element of AF-2 activity. EMBO J. 13:5370–5382.
  • Fondell, J. D., A. L. Roy, and R. G. Roeder. 1993. Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. Genes Dev. 7:1400–1410.
  • Fondell, J. D., F. Brunel, K. Hisatake, and R. G. Roeder. 1996. Unliganded thyroid hormone receptor a can target TATA-binding protein for transcriptional repression. Mol. Cell. Biol. 16:281–287.
  • Gerber, H.-P., K. Seipel, O. Georgiev, M. Höfferer, M. Hug, S. Rusconi, and W. Schaffner. 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263:808–811.
  • Gietz, R. D., and R. A. Woods. 1994. High efficiency transformation with lithium acetate, p. 121–134. In J. R. Johnston (ed.), Molecular genetics of yeast. IRL Press, New York, N.Y.
  • Giniger, E., and M. Ptashne. 1987. Transcription in yeast activated by a putative amphipathic a helix linked to a DNA binding unit. Nature 330:670–672.
  • Greiner, E. F., J. Kirfel, H. Greschik, U. DOrflinger, P. Becker, A. Mercep, and R. Schüle. 1996. Functional analysis of retinoid Z receptor b, a brain-specific nuclear orphan receptor. Proc. Natl. Acad. Sci. USA 93:10105–10110.
  • Gyuris, J., E. Golemis, H. Chertkov, and R. Brent. 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803.
  • Hörlein, A. J., A. M. Näär, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamei, M. Söderström, C. K. Glass, and M. G. Rosenfeld. 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404.
  • Hörlein, A. J., T. Heinzel, and M. G. Rosenfeld. 1996. Gene regulation by thyroid hormone receptors. Endocrinol. Diabetes 3:412–416.
  • Horwitz, K. B., T. A. Jackson, D. L. Bain, J. K. Richter, G. S. Takimoto, and L. Tung. 1996. Nuclear receptor coactivators and corepressors. Mol. Endocrinol. 10:1167–1177.
  • Kurokawa, R., M. Söderström, A. Hörlein, S. Halachmi, M. Brown, M. G. Rosenfeld, and C. K. Glass. 1995. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377:451–454.
  • Lee, J. W., H.-S. Choi, J. Gyuris, R. Brent, and D. D. Moore. 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9:243–254.
  • Leng, X., S. Y. Tsai, B. W. O’Malley, and M.-J. Tsai. 1993. Ligand-dependent conformational changes in thyroid hormone and retinoic acid receptors are potentially enhanced by heterodimerization with retinoic x receptor. J. Steroid Biochem. Mol. Biol. 46:643–661.
  • Leng, X., J. Blanco, S. Y. Tsai, K. Ozato, B. W. O’Malley, and M.-J. Tsai. 1995. Mouse retinoid X receptor contains a separable ligand-binding and transactivation domain in its E region. Mol. Cell. Biol. 15:255–263.
  • Levine, M., and J. L. Manley. 1989. Transcriptional repression of eukaryotic promoters. Cell 59:404–408.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schütz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. M. Evans. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • Mangelsdorf, D. J., and R. M. Evans. 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • Oñate, S. A., S. Y. Tsai, M.-J. Tsai, and B. W. O’Malley. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357.
  • Parker, M. G., and R. White. 1996. Nuclear receptors spring into action. Nature Struct. Biol. 3:113–115.
  • Renaud, J.-P., N. Rochel, M. Ruff, V. Vivat, P. Chambon, H. Gronemeyer, and D. Moras. 1995. Crystal structure of the RAR-g-ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689.
  • Renkawitz, R. 1990. Transcriptional repression in eukaryotes. Trends Genet. 6:192–197.
  • Schulman, I. G., H. Juguilon, and R. M. Evans. 1996. Activation and repression by nuclear hormone receptors: hormone modulates an equilibrium between active and repressive states. Mol. Cell. Biol. 16:3807–3813.
  • Schulman, I. G., C. Li, J. W. R. Schwabe, and R. M. Evans. 1997. The phantom ligand effect: allosteric control of transcription by the retinoic X receptor. Genes Dev. 11:299–308.
  • Seipel, K., O. Georgiev, and W. Schaffner. 1992. Different activation domains stimulate transcription from remote (‘enhancer’) and proximal (‘promoter’) positions. EMBO J. 11:4961–4968.
  • Steiner, C., and C. Kaltschmidt. 1989. An automated method for calcium-mediated gene transfer. Trends Genet. 5:138.
  • Sutherland, J. A., A. Cook, A. J. Bannister, and T. Kouzarides. 1992. Conserved motifs in Fos and Jun define a new class of activation domain. Genes Dev. 6:1810–1819.
  • Tate, B. F., G. Allenby, R. Janocha, S. Kazmer, J. Speck, L. J. Sturzenbecker, P. Abarzua, A. A. Levin, and J. F. Grippo. 1994. Distinct binding determinants for 9-cis retinoic acid are located within AF-2 of retinoic acid receptor a. Mol. Cell. Biol. 14:2323–2330.
  • Tong, G.-X., M. R. Tanen, and M. K. Bagchi. 1995. Ligand modulates the interaction of thyroid hormone receptor b with the basal transcription machinery. J. Biol. Chem. 270:10601–10611.
  • Tong, G.-X., M. Jeyakumar, M. R. Tanen, and M. K. Bagchi. 1996. Transcriptional silencing by unliganded thyroid hormone receptor b requires a soluble corepressor that interacts with the ligand-binding domain of the receptor. Mol. Cell. Biol. 16:1909–1920.
  • Vegeto, E., G. F. Allan, W. T. Schrader, M.-J. Tsai, D. P. McDonnell, and B. W. O’Malley. 1992. The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell 69:703–713.
  • Voegel, J. J., M. J. S. Heine, C. Zechel, P. Chambon, and H. Gronemeyer. 1996. TIF2, a 160 kDA transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15:3667–3675.
  • von Bauer, E., C. Zechel, D. Heery, M. J. S. Heine, J. M. Garnier, V. Vivat, B. Le Dauarin, H. Gronemeyer, P. Chambon, and R. Losson. 1996. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 15:110–124.
  • Wagner, R. L., J. W. Apriletti, M. E. McGrath, B. L. West, J. D. Baxter, and R. J. Fletterick. 1995. A structural role for hormone in the thyroid hormone receptor. Nature 378:690–697.
  • Wendy, H.-R., and U. Hansen. 1996. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 12:229–234.
  • Wigler, M., A. Pelicier, S. Silverstein, and R. Axel. 1978. Biochemical transfer of single-copy eukaryotic genes, using total cellular DNA as donor. Cell 14:725–731.
  • Wong, J., Yun-Bo Shi, and A. P. Wolffe. 1995. A role for nucleosome assembly in both silencing and activation of the Xenopus TRbA gene by the thyroid hormone receptor. Genes Dev. 9:2696–2711.
  • Wurtz, J.-M., W. Bourguet, J.-P. Renaud, V. Vivat, P. Chambon, D. Moras, and H. Gronemeyer. 1996. A canonical structure for the ligand-binding domain of nuclear receptors. Nature Struct. Biol. 3:87–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.