1
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Two Evolutionarily Conserved Repression Domains in the Drosophila Krüppel Protein Differ in Activator Specificity

, &
Pages 4820-4829 | Received 13 Feb 1997, Accepted 29 Apr 1997, Published online: 29 Mar 2023

REFERENCES

  • Blackman, R. K., and M. Meselson. 1986. Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of the Dro-sophila hsp82 gene. J. Mol. Biol. 188:499–515.
  • Brent, R., and M. Ptashne. 1985. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729–736.
  • Brown, M., J. Figge, U. Hansen, C. Wright, K.-T. Jeang, G. Khoury, D. M. Livingston, and T. M. Roberts. 1987. lac repressor can regulate expression from a hybrid SV40 early promoter containing a lac operator in animal cells. Cell 49:603–612.
  • Buratowski, S. 1995. Mechanisms of gene activation. Science 270:1773–1774.
  • Carey, M., Y.-S. Lin, M. R. Green, and M. Ptashne. 1990. A mechanism for synergistic activation of a mammalian gene by GAL4. Nature 345:361–364.
  • Cowell, I. G. 1994. Repression versus activation in the control of gene transcription. Trends Biochem. Sci. 19:38–12.
  • Cowell, I. G., and H. C. Hurst. 1994. Transcriptional repression by the human bZIP factor E4BP4: definition of a minimal repression domain. Nucleic Acids Res. 22:59–65.
  • Emili, A., J. Greenblatt, and C. J. Ingles. 1994. Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Mol. Cell. Biol. 14:1582–1593.
  • English, M. A., and J. Licht. Unpublished data.
  • English, M. A., J. C. Reddy, and J. Licht. Unpublished data.
  • Estruch, F. 1991. The yeast putative transcriptional repressor RGM1 is a proline-rich zinc finger protein. Nucleic Acids Res. 19:4873–1877.
  • Ferreri, K., G. Gill, and M. Montminy. 1994. The cAMP-regulated tran-scription factor CREB interacts with a component of the TFIID complex. Proc. Natl. Acad. Sci. USA 91:1210–1213.
  • Fibi, M., B. Zinc, M. Kessel, A. M. Colberg-Poley, S. Labeit, H. Lehrach, and P. Gruss. 1988. Coding sequence and expression of the homeobox gene 1.3. Development 102:349–359.
  • Figge, J., C. Wright, C. J. Collins, T. M. Roberts, and D. M. Livingston. 1988. Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac repressor in monkey cells. Cell 52:713–722.
  • Gill, G., E. Pascal, Z. H. Tseng, and R. Tjian. 1994. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFn110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc. Natl. Acad. Sci. USA 91:192–196.
  • Giniger, E., and M. Ptashne. 1987. Transcription in yeast activated by a putative amphipathic α helix linked to a DNA-binding unit. Nature 330:670–672.
  • Goodrich, J. A., T. Hoey, C. J. Thut, A. Admon, and R. Tjian. 1993. Drosophila TAFn40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75:519–530.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase. Mol. Cell. Biol. 2:1044–1051.
  • Gray, S., and M. Levine. 1996. Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev. 10:700–710.
  • Han, K., and J. L. Manley. 1993b. Transcriptional repression by the Drosophila even-skipped protein: definition of a minimal repression domain. Genes Dev. 7:491–503.
  • Hanna-Rose, W., and U. Hansen. 1996. Active repression mechanisms of eukaryotic transcriptional repressors. Trends Genet. 12:229–234.
  • Hoey, T., R. O. J. Weinzierl, J.-L. C. G. Gill, B. D. Dynlacht, and R. Tjian. 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveals properties expected of coactivators. Cell 72:247–260.
  • Jäckle, H. Personal communication.
  • Johnson, A. D. 1995. The price of repression. Cell 82:655–658.
  • Kakidani, H., and M. Ptashne. 1988. GAL4 activates gene expression in mammalian cells. Cell 52:161–167.
  • Kassis, J. A., S. J. Poole, D. K. Wright, and P. H. O’Farrell. 1986. Sequence conservation in the protein coding and intron regions of the engrailed transcription unit. EMBO J. 5:3583–3589.
  • Kingston, R. E. 1987. Calcium phosphate transfection, p. 911–919. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology, vol. 1. Greene-Wiley Interscience, New York.
  • Levine, M., and J. L. Manley. 1989. Transcriptional repression of eukaryotic promoters. Cell 59:405–408.
  • Licht, J. D., M. J. Grossel, J. Figge, and U. M. Hansen. 1990. Drosophila Krüppel protein is a transcriptional repressor. Nature 346:76–79.
  • Licht, J. D., W. Hanna-Rose, J. C. Reddy, M. A. English, M. Ro, M. Grossel, R. Shaknovich, and U. Hansen. 1994. Mapping and mutagenesis of the ammo-terminal transcriptional repression domain of the Drosophila Krüppel protein. Mol. Cell. Biol. 14:4057–4066.
  • Licht, J. D., M. Ro, M. A. English, M. Grossel, and U. Hansen. 1993. Selective repression of transcriptional activators at a distance by the Dro-sophila Krüppel protein. Proc. Natl. Acad. Sci. USA 90:11361–11365.
  • Luckow, B., and G. Schutz. 1987. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 15:5490.
  • Madden, S. L., D. M. Cook, and F. J. Rauscher III. 1993. A structure-function analysis of transcriptional repression mediated by the WT1, Wilms’ tumor suppressor protein. Oncogene 8:1713–1720.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual, p. 382–389. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Margolin, J. F., J. R. Friedman, W. K.-H. Meyer, H. Vissing, H.-J. Thiesen, and F. J. Rauscher III. 1994. Krüppel-associated boxes are potent transcrip-tional repression domains. Proc. Natl. Acad. Sci. USA 91:4509–4513.
  • Ollo, R., and T. Maniatis. 1987. Drosophila Krüppel gene product produced in a baculovirus expression system is a nuclear phosphoprotein that binds to DNA. Proc. Natl. Acad. Sci. USA 84:5700–5704.
  • Pankratz, M. J., M. Hoch, E. Seifert, and H. Jäckle. 1989. Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo. Nature 341:337–339.
  • Reiger, J. L., F. Shen, and S. J. Triezenberg. 1993. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 90:883–887.
  • Renkawitz, R. 1990. Transcriptional repressionineukaryotes. Trends Genet. 6:192–197.
  • Rosenberg, U. B., C. Schroder, A. Preiss, A. Kienlin, S. Cote, I. Riede, and H. Jackle. 1986. Structural homology of the product of the Drosophila Krüppel gene with Xenopus transcription factor IIIA. Nature 319:326–329.
  • Saha, A., J. M. Brickman, L. Lehming, and M. Ptashne. 1993. New eukary-otic transcriptional repressors. Nature 363:648–652.
  • Sauer, F., J. D. Fondell, Y. Ohkuma, R. G. Roeder, and H. Jäckle. 1995. Control of transcription by Kruippel through interactions with TFIIB and TFIIEβ. Nature 375:162–164.
  • Sauer, F., and H. Jäackle. 1991. Concentration-dependent transcriptional activation or repression by Kriuppel from a single binding site. Nature 353:563–566.
  • Sauer, F., and H. Jackle. 1993. Dimerization and the control of transcription by Krüppel. Nature 364:454–457.
  • Sauer, F., and H. Jaäckle. 1995. Heterodimeric Drosophila gap gene protein complexes acting as transcriptional repressors. EMBO J. 14:4773–4780.
  • Seldon, R. F., K. Burke-Howie, M. E. Rowe, H. M. Goodman, and D. D. Moore. 1986. Human growth hormone reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6:3173–3179.
  • Štanojević, D., T. Hoey, and M. Levine. 1989. Sequence-specific DNA-binding activities of the gap proteins encoded by hünchback and Krüppel in Drosophila. Nature 341:331–335.
  • Tringer, K. F., C. J. Ingles, and J. Greenblatt. 1990. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345:783–786.
  • Tautz, D., C. Tautz, D. A. Webb, and G. A. Dover. 1987. Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species. Implications for molecular coevolution in multigene families. J. Mol. Biol. 195:525–542.
  • Tautz, D., M. Trick, and G. A. Dover. 1986. Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656.
  • Thut, C. J., J.-L. Chen, R. Klemm, and R. Tjian. 1995. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267:100–104.
  • Tjian, R., and T. Maniatis. 1994. Transcriptional activation: a complexpuzzle with few easy pieces. Cell 77:5–8.
  • Tong, X., F. Wang, C. J. Thut, and E. Keiff. 1995. The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J. Virol. 69:585–588.
  • Treier, M., C. Pfeifle, and D. Tautz. 1989. Comparison of the gap segmentation gene hünchback between Drosophila melanogaster and Drosophila virilis reveals novel modes of evolutionary change. EMBO J. 8:1517–1525.
  • Treisman, J., and C. Desplan. 1989. The products of the Drosophila gap genes hunchback and Kriuppel bind to the hunchback promoters. Nature 341:335–337.
  • Triezenberg, J., R. C. Kingsbury, and . L. McKnight. 1988. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 2:718–729.
  • Wang, Z.-Y., Q.-Q. Qiu, M. Gurrieri, J. Huang, and T. F. Deuel. 1995. WT1, the Wilms’ tumor suppressor gene product, represses transcription through an interactive nuclear protein. Oncogene 10:1243–1247.
  • Witzgall, R., E. O’Leary, A. Leaf, D. Onaldi, and J. V. Bonventre. 1994. The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc. Natl. Acad. Sci. USA 91:4514–4518.
  • Zhao, J. J., R. A. Lazzarini, and L. Pick. 1993. The mouse Hox1.3 gene is functionally equivalent to the Drosophila sex combs reduced gene. Genes Dev. 7:343–354.
  • Zuo, P., D. Štanojević, J. Colgan, K. Han, M. Levine, and J. L. Manley. 1991. Activation and repression of transcription by the gap proteins hunchback and Kruippel in cultured Drosophila cells. Genes Dev. 5:254–264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.