54
Views
509
CrossRef citations to date
0
Altmetric
Research Article

Raf-Induced Proliferation or Cell Cycle Arrest Is Determined by the Level of Raf Activity with Arrest Mediated by p21Cip1

, , , , &
Pages 5598-5611 | Received 24 Apr 1997, Accepted 24 Jun 1997, Published online: 29 Mar 2023

REFERENCES

  • Albanese, C., J. Johnson, G. Watanabe, N. Eklund, D. Vu, A. Arnold, and R. G. Pestell. 1995. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270:23589–23597.
  • Alberola-Ila, J., K. A. Forbush, R. Seger, E. G. Krebs, and R. M. Perlmutter. 1995. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373:620–623.
  • Ambrosio, L., A. P. Mahowald, and N. Perrimon. 1989. Requirement of the Drosophila raf homologue for torso function. Nature 342:288–291.
  • Avruch, J., X. F. Zhang, and J. M. Kyriakis. 1994. Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem. Sci. 19:279–283.
  • Aziz, N., H. Cherwinski, and M. McMahon. Unpublished data.
  • Bailleul, B., M. A. Surani, S. White, S. C. Barton, K. Brown, M. Blessing, J. Jorcano, and A. Balmain. 1990. Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 62:697–708.
  • Bos, J. L. 1989. Ras oncogenes in human cancer: a review. Cancer Res. 49:4682–4689.
  • Bosch, E., H. Cherwinski, D. Peterson, and M. McMahon. Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1. Oncogene, in press.
  • Buscher, D., P. Dello Sparba, R. A. Hipskind, U. R. Rapp, E. R. Stanley, and M. Baccarini. 1993. v-raf confers CSF-1 independent growth to a macrophage cell line and leads to immediate early gene expression without MAP-kinase activation. Oncogene 8:3323–3332.
  • Chen, D., D. Woods, and M. McMahon. Unpublished data.
  • Chin, Y. E., M. Kitagawa, W. C. Su, Z. H. You, Y. Iwamoto, and X. Y. Fu. 1996. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272:719–722.
  • Cleveland, J. L., J. Troppmair, G. Packham, D. S. Askew, P. Lloyd, G. M. Gonzalez, G. Nunez, J. N. Ihle, and U. R. Rapp. 1994. v-raf suppresses apoptosis and promotes growth of interleukin-3-dependent myeloid cells. Oncogene 9:2217–2226.
  • Cormack, B. P., R. H. Valdivia, and S. Falkow. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38.
  • Cowley, S., H. Paterson, P. Kemp, and C. J. Marshall. 1994. Activation of MAP kinase kinase is necessary and suf®cient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Danielian, P. S., R. White, S. A. Hoare, S. E. Fawell, and M. G. Parker. 1993. Identi®cation of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol. Endocrinol. 7:232–240.
  • Deng, C., P. Zhang, J. W. Harper, S. J. Elledge, and P. Leder. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684.
  • de Nooij, J. C., M. A. Letendre, and I. K. Hariharan. 1996. A cyclin- dependent kinase inhibitor, Dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis. Cell 87:1237–1247.
  • Dent, P., W. Haser, T. A. J. Haystead, L. A. Vincent, T. M. Roberts, and T. W. Sturgill. 1992. Activation of mitogen-activated protein kinase by v-raf in NIH 3T3 cells and in vitro. Science 257:1404–1407.
  • Dickson, B., and E. Hafen. 1994. Genetics of signal transduction in invertebrates. Curr. Opin. Genet. Dev. 4:64–70.
  • Dickson, B., F. Sprenger, D. Morrison, and E. Hafen. 1992. Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360:600–602.
  • Dickson, B. J., M. Domínguez, A. van der Stratten, and E. Hafen. 1995. Control of Drosophila photoreceptor cell fates by phyllopod, a novel nuclear protein acting downstream of the Raf kinase. Cell 80:453–462.
  • Doyle, H. J., and J. M. Bishop. 1993. Torso, a receptor tyrosine kinase required for embryonic pattern formation, shares substrates with the sevenless and EGF-R pathways in Drosophila. Genes Dev. 7:633–646.
  • Egan, S. E., and R. A. Weinberg. 1993. The pathway to signal achievement. Nature 365:781–783.
  • El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Fabian, J. R., I. O. Daar, and D. K. Morrison. 1993. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol. Cell. Biol. 13:7170–7179.
  • Fan, Z., Y. Lu, X. Wu, A. DeBlasio, A. Koff, and J. Mendelsohn. 1995. Prolonged induction of p21Cip1/WAF1/CDK2/PCNA complex by epidermal growth factor receptor activation mediates ligand-induced A431 cell growth inhibition. J. Cell. Biol. 131:235–242.
  • Fang, F., G. Orend, N. Watanabe, T. Hunter, and E. Ruoslahti. 1996. Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 271:499–502.
  • Fero, M. L., M. Rivkin, M. Tasch, P. Porter, C. E. Carow, E. Firpo, K. Polyak, L. H. Tsai, V. Broudy, R. M. Perlmutter, K. Kaushansky, and J. M. Roberts. 1996. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-de®cient mice. Cell 85:733–744.
  • Finney, R. E., S. M. Robbins, and J. M. Bishop. 1993. Association of pRas and pRaf-1 in a complex correlates with activation of a signal transduction pathway. Curr. Biol. 3:805–812.
  • Han, M., A. Golden, Y. Han, and P. W. Sternberg. 1993. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363:133–139.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin- dependent kinases. Cell 75:805–816.
  • Harper, J. W., S. J. Elledge, K. Keyomarsi, B. Dynlacht, L. H. Tsai, P. Zhang, S. Dobrowolski, C. Bai, L. Connell-Crowley, E. Swindell, N. P. Fox, and N. Wei. 1995. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell 6:387–400.
  • Herskowitz, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80:187–197.
  • Hill, C. S., R. Marais, S. John, J. Wynne, S. Dalton, and R. Treisman. 1993. Functional analysis of a growth factor-responsive transcription factor complex. Cell 73:395–406.
  • Hill, C. S., and R. Treisman. 1995. Transcriptional regulation by extracellular signals: mechanisms and speci®city. Cell 80:199–211.
  • Howe, L. R., S. J. Leevers, N. Gomez, S. Nakielny, P. Cohen, and C. J. Marshall. 1992. Activation of the MAP kinase pathway by the protein kinase raf. Cell 71:335–342.
  • Hunter, T. 1991. Cooperation between oncogenes. Cell 64:249–270.
  • Hunter, T. 1997. Oncoprotein networks. Cell 88:333–346.
  • Hunter, T., and J. Pines. 1991. Cyclins and cancer. Cell 66:1071–1074.
  • Karin, M. 1994. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr. Opin. Cell Biol. 6:415–424.
  • Kolch, W., G. Heidecker, P. Lloyd, and U. R. Rapp. 1991. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349:426–428.
  • Land, H., L. F. Parada, and R. A. Weinberg. 1983. Cellular oncogenes and multistep carcinogenesis. Science 222:771–778.
  • Land, H., L. F. Parada, and R. A. Weinberg. 1983. Tumorigenic conversion of primary embryo ®broblasts requires at least two cooperating oncogenes. Nature 304:596–602.
  • Lane, M. E., K. Sauer, K. Wallace, Y. N. Jan, C. F. Lehner, and H. Vaessin. 1996. Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell 87:1225–1235.
  • Lavoie, J. N., G. L’Allemain, A. Brunet, R. Muller, and J. Pouyssegur. 1996. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271:20608–20616.
  • Lees, E. 1995. Cyclin dependent kinase regulation. Curr. Biol. 7:773–780.
  • Li, P., K. Wood, H. Mamon, W. Haser, and T. Roberts. 1991. Raf-1: a kinase currently without a cause but not lacking in effects. Cell 64:479–482.
  • Linardopoulos, S., A. J. Street, D. E. Quelle, D. Parry, G. Peters, C. J. Sherr, and A. Balmain. 1995. Deletion and altered regulation of p16INK4a and p15INK4b in undifferentiated mouse skin tumors. Cancer Res. 55:5168–5172.
  • Littlewood, T. D., D. C. Hancock, P. S. Danielian, M. G. Parker, and G. I. Evan. 1995. A modi®ed oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23:1686–1690.
  • Lloyd, A. C., F. Obermiiller, S. Staddon, C. Barth, M. McMahon, and H. Land. 1997. Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev. 11:663–677.
  • MacNicol, A. M., A. J. Muslin, and L. T. Williams. 1993. Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell 73:571–583.
  • Mangues, R., I. Seidman, A. Pellicer, and J. W. Gordon. 1990. Tumorigenesis and male sterility in transgenic mice expressing a MMTV/N-ras oncogene. Oncogene 5:1491–1497.
  • Mansour, S. J., W. T. Matten, A. S. Hermann, J. M. Candia, S. Rong, K. Fukasawa, W. G. Vande, and N. G. Ahn. 1994. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970.
  • Marais, R., J. Wynne, and R. Treisman. 1993. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–394.
  • Marais, R., Y. Light, H. Paterson, and C. J. Marshall. 1995. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 14:101–110.
  • Marshall, C. J. 1994. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 4:82–89.
  • Marshall, C. J. 1995. Speci®city of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.
  • McCarthy, S. A., D. Chen, B.-S. Yang, J. J. Garcia Ramirez, H. Cherwinski, X.-R. Chen, M. Klagsbrun, C. A. Hauser, M. C. Ostrowski, and M. McMahon. 1997. Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and the induction of heparin-binding epidermal growth factor gene expression by oncogenic Raf-1. Mol. Cell. Biol. 17:2401–2412.
  • McCarthy, S. A., M. L. Samuels, C. A. Pritchard, J. A. Abraham, and M. McMahon. 1995. Rapid induction of heparin binding epidermal growth factor/diphtheria toxin receptor by Ras and Raf oncogenes. Genes Dev. 9:1953–1964.
  • Meyerson, M., and E. Harlow. 1994. Identi®cation of G1 kinase activity for cdk6, a novel cyclin D partner. Mol. Cell. Biol. 14:2077–2086.
  • Miao, G. G., and T. Curran. 1994. Cell transformation by c-fos requires an extended period and is independent of the cell cycle. Mol. Cell. Biol. 14:4295–4310.
  • Missero, C., F. Di Cunto, H. Kiyokawa, A. Koff, and G. P. Dotto. 1996. The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev. 10:3065–3075.
  • Mittnacht, S., H. Paterson, M. F. Olson, and C. J. Marshall. 1997. Ras signaling is required for inactivation of the tumor suppressor pRb cell-cycle control protein. Curr. Biol. 7:219–221.
  • Morgan, D. O. 1992. Cell cycle control in normal and neoplastic cells. Curr. Opin. Genet. Dev. 2:33–37.
  • Morgan, D. O. 1995. Principles of cdk regulation. Nature 374:131–134.
  • Morgenstern, J. P., and H. Land. 1990. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18:3587–3596.
  • Morrison, D. K. 1990. The Raf-1 kinase as a transducer of mitogenic signals. Cancer Cells 2:377–382.
  • Nishida, E., and Y. Gotoh. 1993. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18:128–131.
  • Nishida, Y., M. Hata, T. Ayaki, H. Ryo, M. Yamagata, K. Shimizu, and Y. Nishizuka. 1988. Proliferation of both somatic and germ cells is affected in the Drosophila mutants of raf proto-oncogene. EMBO J. 7:775–781.
  • Parker, S. B., G. Eichele, P. Zhang, A. Rawls, A. T. Sands, A. Bradley, E. N. Olson, J. W. Harper, and S. J. Elledge. 1995. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267:1024–1027.
  • Parry, D., and E. Lees. Unpublished data.
  • Pear, W. S., G. P. Nolan, M. L. Scott, and D. Baltimore. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396.
  • Peeper, D. S., T. M. Upton, M. H. Ladha, E. Neuman, J. Zalvide, R. Bernards, J. DeCaprio, and M. E. Ewen. 1997. Ras signaling linked to the cell cycle machinery by the retinoblastoma protein. Nature 386:177–181.
  • Perrimon, N., and L. A. Perkins. 1997. There must be 50 ways to rule the signal: the case of the Drosophila EGF receptor. Cell 89:13–16.
  • Peter, M., A. Gartner, J. Horecka, G. Ammerer, and I. Herskowitz. 1993. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73:747–760.
  • Petrocelli, T., R. Poon, D. J. Drucker, J. M. Slingerland, and C. F. Rosen. 1996. UVB radiation induces p21Cip1/WAF1 and mediates G1 and S phase checkpoints. Oncogene 12:1387–1396.
  • Polyak, K., J.-Y. Kato, M. Solomon, C. J. Sherr, J. Massague, J. M. Roberts, and A. Koff. 1994. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-b and contact inhibition to cell cycle arrest. Genes Dev. 8:9–22.
  • Prasher, D. C., V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233.
  • Pritchard, C. A., L. Bolin, R. Slattery, R. L. Murray, and M. McMahon. 1996. Post-natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A-Raf protein kinase. Curr. Biol. 6:614–617.
  • Pritchard, C. A., M. L. Samuels, E. Bosch, and M. McMahon. 1995. Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol. Cell. Biol. 15:6430–6442.
  • Pumiglia, K. M., and S. J. Decker. 1997. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 94:448–452.
  • Quaife, C. J., C. A. Pinkert, D. M. Ornitz, R. D. Palmiter, and R. L. Brinster. 1987. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 48:1023–1034.
  • Quelle, D. E., R. A. Ashmun, G. J. Hannon, P. A. Rehberger, D. Trono, K. H. Richter, C. Walker, D. Beach, C. J. Sherr, and M. Serrano. 1995. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene 11:635–645.
  • Rapp, U. R. 1991. Role of Raf-1 serine/threonine protein kinase in growth factor signal transduction. Oncogene 6:495–500.
  • Ravi et al. Submitted for publication.
  • Ridley, A. J., H. F. Paterson, M. Noble, and H. Land. 1988. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J. 7:1635–1645.
  • Roussel, M. F., S. A. Shurtleff, J. R. Downing, and C. J. Sherr. 1990. A point mutation at tyrosine-809 in the human colony-stimulating factor 1 receptor impairs mitogenesis without abrogating tyrosine kinase activity, association with phosphatidylinositol 3-kinase, or induction of c-fos and junB genes. Proc. Natl. Acad. Sci. USA 87:6738–6742.
  • Russo, A. A., P. D. Jeffrey, A. K. Patten, J. Massague, and N. P. Pavletich. 1996. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382:325–331.
  • Samuels, M. L., and M. McMahon. 1994. Inhibition of platelet-derived growth factor- and epidermal growth factor-mediated mitogenesis and signaling in 3T3 cells expressing DRaf-1:ER, an estradiol-regulated form of Raf-1. Mol. Cell. Biol. 14:7855–7866.
  • Samuels, M. L., M. J. Weber, J. M. Bishop, and M. McMahon. 1993. Conditional transformation of cells and rapid activation of the mitogen- activated protein kinase cascade by an estradiol-dependent human Raf-1 protein kinase. Mol. Cell. Biol. 13:6241–6252.
  • Sandgren, E. P., C. J. Quaife, C. A. Pinkert, R. D. Palmiter, and R. L. Brinster. 1989. Oncogene-induced liver neoplasia in transgenic mice. Oncogene 4:715–724.
  • Serrano, M., H. Lee, L. Chin, C. Cordon-Cardo, D. Beach, and R. A. DePinho. 1996. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37.
  • Serrano, M., A. W. Lin, M. E. McCurrach, D. Beach, and S. W. Lowe. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602.
  • Sewing, A., B. Wiseman, A. C. Lloyd, and H. Land. 1997. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol. 17:5588–5597.
  • Sherr, C. J. 1996. Cancer cell cycles. Science 274:1672–1677.
  • Sherr, C. J. 1993. Mammalian G1 cyclins. Cell 73:1059–1065.
  • Sherr, C. J., and J. M. Roberts. 1995. Inhibitors of mammalian G1 cyclin- dependent kinases. Genes Dev. 9:1149–1163.
  • Smith, M. R., S. J. DeGudicibus, and D. W. Stacey. 1986. Requirement for c-ras proteins during viral oncogene transformation. Nature 320:540–543.
  • Smith, M. R., G. Heidecker, U. R. Rapp, and H.-F. Kung. 1990. Induction of transformation and DNA synthesis after microinjection of raf proteins. Mol. Cell. Biol. 10:3828–3833.
  • Sprenger, F., M. M. Trosclair, and D. K. Morrison. 1993. Biochemical analysis of torso and D-Raf during Drosophila embryogenesis: implications for terminal signal transduction. Mol. Cell. Biol. 13:1163–1172.
  • Stanton, V. P., Jr., D. W. Nichols, A. P. Laudano, and G. M. Cooper. 1989. De®nition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol. Cell. Biol. 9:639–647.
  • Steinman, R. A., B. Hoffman, A. Iro, C. Guillouf, D. A. Liebermann, and M. E. el-Houseini. 1994. Induction of p21 (WAF-1/CIP1) during differentiation. Oncogene 9:3389–3396.
  • Sternberg, P. W., A. Golden, and M. Han. 1993. Role of a raf protooncogene during Caenorhabditis elegans vulval development. Phil. Trans. R. Soc. Lond. B 340:259–265.
  • Storm, S. M., J. L. Cleveland, and U. R. Rapp. 1990. Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene 5:345–351.
  • Takagi, S., M. L. McFadden, R. E. Humphreys, B. A. Woda, and T. Sairenji. 1993. Detection of 5-bromo-2-deoxyuridine (BrdUrd) incorporation with monoclonal anti-BrdUrd antibody after deoxyribonuclease treatment. Cytometry 14:640–648.
  • Treisman, R. 1996. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8:205–215.
  • Van Aelst, L., M. Barr, S. Marcus, A. Polverino, and M. Wigler. 1993. Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA 90:6213–6217.
  • Vojtek, A. B., S. M. Hollenberg, and J. A. Cooper. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214.
  • Warne, P. H., P. R. Viciana, and J. Downward. 1993. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364:352–355.
  • Winston, J. T., S. R. Coats, Y. Z. Wang, and W. J. Pledger. 1996. Regulation of the cell cycle machinery by oncogenic ras. Oncogene 12:127–134.
  • Wood, K. W., H. Qi, G. D’Arcangelo, R. C. Armstrong, T. M. Roberts, and S. Halegoua. 1993. The cytoplasmic raf oncogene induces a neuronal phenotype in PC12 cells: a potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc. Natl. Acad. Sci. USA 90:5016–5020.
  • Woods, D., N. Davidson, and M. McMahon. Unpublished data.
  • Woods, D., H. Cherwinski, and M. McMahon. Unpublished data.
  • Woods, D., N. Aziz, H. Cherwinski, and M. McMahon. Unpublished data.
  • Woods, D., and M. McMahon. Unpublished data.
  • Zhu, X., M. Ohtsubo, R. M. Bohmer, J. M. Roberts, and R. K. Assoian. 1996. Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. J. Cell Biol. 133:391–403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.