39
Views
166
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

A Novel mre11 Mutation Impairs Processing of Double-Strand Breaks of DNA during Both Mitosis and Meiosis

&
Pages 260-268 | Received 10 Jul 1997, Accepted 21 Oct 1997, Published online: 28 Mar 2023

REFERENCES

  • Ajimura, M., S.-H. Leem, and H. Ogawa 1993. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133: 51–66.
  • Alani, E., L. Cao, and N. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545.
  • Alani, E., R. Padmore, and N. Kleckner 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61: 419–436.
  • Baum, B. 1995. Mre11 and S. pombe Rad32 are phosphoesterases. Yeast Update Newsl. 3.7: 1.
  • Bergerat, A., B. de Massy, D. Gadelle, P.-C. Varoutas, A. Nicolas, and P. Forterre 1997. An atypical topoisomerase II from archaea with implications for meioric recombination. Nature 386: 414–417.
  • Cao, L., E. Alani, and N. Kleckner 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61: 1089–1101.
  • Chepurnaya, O. V., S. A. Kozhin, V. T. Peshekhonov, and V. G. Korolev 1995. RAD58 (XRS4)—a new gene in the RAD52 epistasis group. Curr. Genet. 28: 274–279.
  • Connelly, J. C., and D. R. F. Leach 1996. The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes Cells 1: 285–291.
  • Connolly, B., C. I. White, and J. E. Haber 1988. Physical monitoring of mating type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 2342–2349.
  • de Massy, B., V. Rocco, and A. Nicolas 1995. The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J. 14: 4589–4598.
  • Esposito, R. E., and M. S. Esposito 1974. Genetic recombination and commitment to meiosis in Saccharomyces. Proc. Natl. Acad. Sci. USA 71: 3172–3176.
  • Fast, D. 1973. Sporulation synchrony of Saccharomyces cerevisiae grown in various carbon sources. J. Bacteriol. 116: 925–930.
  • Fiorentini, P., K. N. Huang, D. X. Tishkoff, R. D. Kolodner, and L. S. Symington 1997. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol. Cell. Biol. 17: 2764–2773.
  • Friedberg, E. C., G. C. Walker, and W. Siede 1995. DNA repair and mutagenesis. ASM Press, Washington, D.C.
  • Game, J. C., and R. K. Mortimer 1974. A genetic study of X-ray sensitive mutants in yeast. Mutat. Res. 24: 281–292.
  • Gietz, R. D., and A. Sugino 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534.
  • Goldway, M., A. Sherman, D. Zenvirth, T. Arbel, and G. Simchen 1993. A short chromosomal region with major roles in yeast chromosome III meiotic disjunction, recombination and double strand breaks. Genetics 133: 159–169.
  • Huang, K. N., and L. S. Symington 1993. A 5′-3′ exonuclease from Saccharomyces cerevisiae is required for in vitro recombination between linear DNA molecules with overlapping homology. Mol. Cell. Biol. 13: 3125–3134.
  • Ivanov, E. L., V. G. Korolev, and F. Fabre 1992. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132: 651–664.
  • Ivanov, E. L., N. Sugawara, J. Fishman-Lobell, and J. E. Haber 1995. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693–704.
  • Ivanov, E. L., N. Sugawara, C. I. White, F. Fabre, and J. E. Haber 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 3414–3425.
  • Johzuka, K., and H. Ogawa 1995. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139: 1521–1532.
  • Keeney, S., C. N. Giroux, and N. Kleckner 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375–384.
  • Keeney, S., and N. Kleckner 1995. Covalent protein-DNA complexes at the 5′ strand termini of meiosis-specific double-strand breaks in yeast. Proc. Natl. Acad. Sci. USA 92: 11274–11278.
  • Klapholz, S., and R. E. Esposito 1980. Isolation of spo12-1 and spo13-1 from a natural variant of yeast that undergoes a single meiotic division. Genetics 96: 567–588.
  • Kozhin, S. A., O. V. Chepurnaya, and V. G. Korolev 1995. The RAD58 (XRS4) gene: map position on the right arm of chromosome XIII. Yeast 11: 1211–1213.
  • Liu, J., T. C. Wu, and M. Lichten 1995. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 14: 4599–4608.
  • Malone, R. E. 1983. Multiple mutant analysis of recombination in yeast. Mol. Gen. Genet. 189: 405–412.
  • Malone, R. E., S. Bullard, M. Hermiston, R. Rieger, M. Cool, and A. Galbraith 1991. Isolation of mutants defective in early steps of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 128: 79–88.
  • Malone, R. E., and R. E. Esposito 1981. Recombinationless meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1: 891–901.
  • Malone, R. E., T. Ward, S. Lin, and J. Waring 1990. The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr. Genet. 18: 111–116.
  • McKee, A. H., and N. Kleckner 1997. A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146: 797–816.
  • Moore, J. K., and J. E. Haber 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 2164–2173.
  • Nairz, K., and F. Klein 1997. mre11S—a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11: 2272–2290.
  • Ogawa, T., A. Shinohara, A. Nabetani, T. Ikeya, X. Yu, E. H. Egelman, and H. Ogawa 1993. RecA-like recombination proteins in eukaryotes: functions and structures of RAD51 genes. Cold Spring Harbor Symp. Quant. Biol. 58: 567–576.
  • Petes, T. D., R. E. Malone, and L. S. Symington 1991. Recombination in yeast The molecular and cellular biology of the yeast Saccharomyces cerevisiae: genome dynamics, protein synthesis and energetics. In: Broach, J., J. Pringle, and E. Jones407–521Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Prinz, S., A. Amon, and F. Klein 1997. Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146: 781–795.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60: 237–243.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101: 202–211.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sharples, G. J., and D. R. Leach 1995. Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol. Microbiol. 17: 1215–1217.
  • Sherman, F., and H. Roman 1963. Evidence for two types of allelic recombination in yeast. Genetics 48: 255–261.
  • Shinohara, A., H. Ogawa, and T. Ogawa 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69: 457–470.
  • Shinohara, A., and T. Ogawa 1995. Homologous recombination and the roles of double-strand breaks. Trends Biochem. Sci. 20: 387–391.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Sugawara, N., and J. E. Haber 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12: 563–575.
  • Tsubouchi, H., and H. Ogawa. Unpublished data.
  • Usui, T., and H. Ogawa. Unpublished observations.
  • White, C. I., and J. E. Haber 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9: 663–673.
  • Xu, L., B. M. Weiner, and N. Kleckner 1997. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 11: 106–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.