7
Views
14
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Isolation and Characterization of New Alleles of the Cyclin-Dependent Kinase Gene CDC28 with Cyclin-Specific Functional and Biochemical Defects

, &
Pages 290-302 | Received 23 May 1997, Accepted 07 Oct 1997, Published online: 28 Mar 2023

REFERENCES

  • Allen, J. B., and S. J. Elledge 1994. A family of vectors that facilitate transposon and insertional mutagenesis of cloned genes in yeast. Yeast 10: 1267–1272.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl 1987. Current protocols in molecular biology. Wiley Interscience, New York, N.Y.
  • Boeke, J. D., F. LaCroute, and G. R. Fink 1984. A positive selection for mutants lacking 5′ phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197: 345–346.
  • Chang, F., and I. Herskowitz 1990. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63: 999–1011.
  • Cross, F. R. 1990. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell. Biol. 10: 6482–6490.
  • Cross, F. R. 1995. Starting the cell cycle: what’s the point? Curr. Opin. Cell Biol. 7: 790–797.
  • Cross, F. R. 1997. Marker swap plasmids: convenient tools for yeast molecular genetics. Yeast 13: 647–653.
  • Cross, F. R., and C. M. Blake 1993. The yeast Cln3 protein is an unstable activator of Cdc28. Mol. Cell. Biol. 13: 3266–3271.
  • Deshaies, R. J., and M. Kirschner 1995. G1 cyclin-dependent activation of p34CDC28 (Cdc28p) in vitro. Proc. Natl. Acad. Sci. USA 92: 1182–1186.
  • Dirick, L., T. Böhm, and K. Nasmyth 1995. Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J. 14: 4803–4813.
  • Grandin, N., and S. I. Reed 1993. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol. Cell. Biol. 13: 2113–2125.
  • Hoek, M., and F. R. Cross. Unpublished results.
  • Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease 1989. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 61–68.
  • Huang, K. N., S. A. Odinsky, and F. R. Cross 1997. Structure-function analysis of the Saccharomyces cerevisiae G1 cyclin Cln2. Mol. Cell. Biol. 17: 4654–4666.
  • Jeffrey, P. D., A. A. Russo, K. Polyak, E. Gibbs, J. Hurwitz, J. Massague, and N. Pavletich 1995. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376: 313–320.
  • Johnson, L. N., M. E. M. Noble, and D. J. Owen 1996. Active and inactive protein kinases: structural basis for regulation. Cell 85: 149–158.
  • Leung, D. W., E. Chen, and D. V. Goeddel 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1: 11–15.
  • Levine, K., K. Huang, and F. R. Cross 1996. Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities. Mol. Cell. Biol. 16: 6794–6803.
  • Lew, D. J., and S. I. Reed 1993. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120: 1305–1320.
  • Lim, H. H., C. J. Loy, S. Zaman, and U. Surana 1996. Dephosphorylation of threonine 169 of Cdc28 is not required for exit from mitosis but may be necessary for Start in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 4573–4583.
  • McCaffrey, G., F. J. Clay, K. Kelsey, and G. F. Sprague 1987. Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 2680–2690.
  • Muhlrad, D., R. Hunter, and R. Parker 1992. A rapid method for localized mutagenesis of yeast genes. Yeast 8: 79–82.
  • Nasmyth, K. 1996. At the heart of the budding yeast cell cycle. Trends Genet. 12: 405.
  • Oehlen, L. J. W. M., and F. R. Cross. Unpublished data.
  • Oehlen, L. J. W. M., and F. R. Cross 1994. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Genes Dev. 8: 1058–1070.
  • Oehlen, L. J. W. M., J. D. McKinney, and F. R. Cross 1996. Ste12 and Mcm1 regulate cell cycle-dependent transcription of FAR1. Mol. Cell. Biol. 16: 2830–2837.
  • Peter, M., and I. Herskowitz 1994. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265: 1228–1231.
  • Reed, S. I. 1980. The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95: 561–577.
  • Richardson, H. E., C. Wittenberg, F. Cross, and S. I. Reed 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59: 1127–1133.
  • Russo, A. A., P. D. Jeffrey, and N. P. Pavletich 1996. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3: 696–700.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Stevenson, B. J., N. Rhodes, B. Errede, Sprague G. F., Jr. 1992. Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev. 6: 1293–1304.
  • Stuart, D., and C. Wittenberg 1995. CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev. 9: 2780–2794.
  • Trueheart, J., J. D. Boeke, and G. R. Fink 1987. Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol. Cell. Biol. 7: 2316–2328.
  • Tyers, M., G. Tokiwa, and B. Futcher 1993. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12: 1955–1968.
  • Tyers, M., G. Tokiwa, R. Nash, and B. Futcher 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11: 1773–1784.
  • Wassmann, K., and G. Ammerer 1997. Overexpression of the G1-cyclin gene CLN2 represses the mating pathway in Saccharomyces cerevisiae at the level of the MEKK Ste11. J. Biol. Chem. 272: 13180–13188.
  • Wittenberg, C., S. L. Richardson, and S. I. Reed 1987. Subcellular localization of a protein kinase required for cell cycle initiation in Saccharomyces cerevisiae: evidence for an association between the CDC28 gene product and the insoluble cytoplasmic matrix. J. Cell Biol. 105: 1527–1538.
  • Wittenberg, C., K. Sugimoto, and S. I. Reed 1990. G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62: 225–237.
  • Zanolari, B., and H. Riezman 1991. Quantitation of α-factor internalization and response during the Saccharomyces cerevisiae cell cycle. Mol. Cell. Biol. 11: 5251–5258.
  • Zheng, J., D. R. Knighton, L. F. Ten Eyck, R. Karlsson, N. Xuong, S. S. Taylor, and J. M. Sowadski 1993. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 32: 2154–2161.
  • Zwijsen, R. M. L., E. Wientjens, R. Klompmaker, J. van der Sman, R. Bernards, and R. J. A. M. Michalides 1997. CDK-independent activation of estrogen receptor by cyclin D1. Cell 88: 405–415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.