8
Views
30
CrossRef citations to date
0
Altmetric
Gene Expression

A Short Sequence within Two Purine-Rich Enhancers Determines 5′ Splice Site Specificity

, , &
Pages 343-352 | Received 23 May 1997, Accepted 13 Oct 1997, Published online: 28 Mar 2023

REFERENCES

  • Amendt, B. A., Z. H. Si, and C. M. Stoltzfus 1995. Presence of exon splicing silencers within human immunodeficiency virus type 1 tat exon 2 and tat-rev exon 3: evidence for inhibition mediated by cellular factors. Mol. Cell. Biol. 15: 4606–4615.
  • Black, D. L. 1995. Finding splice sites within a wilderness of RNA. RNA 1: 763–771.
  • Caceres, J. F., S. Stamm, D. M. Helfman, and A. R. Krainer 1994. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265: 1706–1709.
  • Caputi, M., G. Casari, S. Guenz, R. Tagliabue, A. Sidoli, C. A. Melo, and F. E. Baralle 1994. A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res. 22: 1018–1022.
  • Cooper, T. A. 1992. In vitro splicing of cardiac troponin T precursors—exon mutations disrupt splicing of the upstream intron. J. Biol. Chem. 267: 5330–5338.
  • Cooper, T. A., and C. P. Ordahl 1989. Nucleotide substitutions within the cardiac troponin T alternative exon disrupt pre-mRNA alternative splicing. Nucleic Acids Res. 17: 7905–7921.
  • Crispino, J. D., B. J. Blencowe, and P. A. Sharp 1994. Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP. Science 265: 1866–1869.
  • Dirksen, W. P., R. K. Hampson, S. Qiang, and F. M. Rottman 1994. A purine-rich exon sequence enhances alternative splicing of bovine growth hormone pre-mRNA. J. Biol. Chem. 269: 6431–6436.
  • Dominski, Z., and R. Kole 1994. Identification of exon sequences involved in splice site selection. J. Biol. Chem. 269: 23590–23596.
  • Fu, X.-D. 1993. The superfamily of arginine/serine-rich splicing factors. RNA 1: 663–680.
  • Gamberi, C., E. Izurralde, C. Beisel, and I. W. Mattaj 1997. Interaction between the human nuclear cap-binding protein complex and hnRNP F. Mol. Cell. Biol. 17: 2575–2597.
  • Hayashi, K., H. Yano, T. Hashida, R. Takeuchi, O. Takeda, K. Asada, E. Takahashi, I. Kato, and K. Sobue 1992. Genomic structure of the human caldesmon gene. Proc. Natl. Acad. Sci. USA 89: 12122–12126.
  • Hedley, M. L., and T. Maniatis 1991. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell 65: 579–586.
  • Hodges, D., and S. I. Bernstein 1994. Genetic and biochemical analysis of alternative splicing. Adv. Genet. 31: 207–281.
  • Humphrey, M. B., J. Bryan, T. A. Cooper, and S. M. Berget 1995. A 32-nucleotide exon-splicing enhancer regulates usage of competing 5′ splice sites in a differential internal exon. Mol. Cell. Biol. 15: 3979–3988.
  • Humphrey, M. B., and J. Bryan 1992. Human caldesmon isoforms are generated by an unusual alternative splicing mechanism, abstr. 234. Abstracts of the American Society of Cell Biology Thirty-Second Annual Meeting. American Society of Cell Biology, Bethesda, Md.
  • Humphrey, M. B., H. Herrera-Sosa, G. Gonzalez, R. Lee, and J. Bryan 1992. Cloning of cDNAs encoding human caldesmons. Gene 112: 197–204.
  • Kanopka, A., O. Muhlemann, and G. Akusjarvi 1996. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381: 535–538.
  • Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Luhrmann, M. A. Garcia-Blanco, and J. L. Manley 1994. Protein-protein interactions and 5′ splice site recognition in mammalian mRNA precursors. Nature 368: 119–124.
  • Lavigueur, A., H. La Branche, A. R. Kornblihtt, and B. Chabot 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with S/R proteins and stimulates U2 snRNP binding. Genes Dev. 7: 2405–2417.
  • Lou, H., R. F. Gagel, and S. M. Berget 1996. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 10: 208–219.
  • Lynch, K. W., and T. Maniatis 1995. Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev. 9: 284–293.
  • Lynch, K. W., and T. Maniatis 1995. Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev. 9: 284–293.
  • Manley, J. L., and R. Tacke 1996. SR proteins and splicing control. Genes Dev. 10: 1569–1579.
  • Ramchatesingh, J., A. M. Zahler, K. M. Neugebauer, M. B. Roth, and T. Cooper 1995. A subset of S/R proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol. Cell. Biol. 15: 4898–4907.
  • Reed, R. 1996. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6: 215–220.
  • Robberson, B. L., G. J. Cote, and S. M. Berget 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10: 84–94.
  • Ryner, L. C., S. F. Goodwin, D. H. Castrillon, A. Anand, A. Villella, B. S. Baker, J. C. Hall, B. J. Taylor, and S. A. Wasserman 1990. Control of male sexual orientation in Drosophila by the fruitless gene. Cell 87: 1079–1090.
  • Screaton, G. R., J. F. Caceres, A. Mayeda, M. V. Bell, M. Plebanski, D. G. Jackson, J. I. Bell, and A. R. Krainer 1995. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 14: 4336–4349.
  • Staffa, A., and A. Cochrane 1995. Identification of positive and negative splicing regulatory elements within the terminal tat-rev exon of human immunodeficiency virus type 1. Mol. Cell. Biol. 15: 4597–4605.
  • Staknis, D., and R. Reed 1994. S/R proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14: 7670–7682.
  • Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and F. M. Rottman 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7: 2598–2608.
  • Tacke, R., and J. L. Manley 1995. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14: 3540–3551.
  • Tacke, R., and J. L. Manley 1997. Sequence-specific binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94: 1148–1153.
  • Talerico, M., and S. M. Berget 1990. Effect of 5′ splice site mutations on splicing of the preceding intron. Mol. Cell. Biol. 10: 6299–6305.
  • Tanaka, K., A. Watakabe, and Y. Shimura 1994. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol. 4: 1347–1354.
  • Tarn, W. Y., and J. A. Steitz 1994. SR protein can compensate for the loss of U1 snRNP function in vitro. Genes Dev. 8: 2704–2717.
  • van Oers, C. C. M., G. J. Adema, H. Zandberg, T. C. Moen, and P. D. Baas 1994. Two different sequence elements within exon 4 are necessary for calcitonin-specific splicing of the human calcitonin/calcitonin gene-related peptide I pre-mRNA. Mol. Cell. Biol. 14: 951–960.
  • Wang, J., and J. L. Manley 1995. Overexpression of the S/R proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways. RNA 1: 335–346.
  • Wang, J., Y. Takagaki, and J. L. Manley 1996. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev. 10: 2588–2599.
  • Watakabe, A., K. Tanaka, and Y. Shimura 1993. The role of exon sequences in splice site selection. Genes Dev. 7: 407–418.
  • Xu, R., J. Teng, and T. A. Cooper 1993. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol. Cell. Biol. 13: 3660–3674.
  • Yeakley, J. M., F. Hedjran, J.-P. Morfin, N. Merillat, M. G. Rosenfeld, and R. B. Emerson 1993. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive exon and intron elements. Mol. Cell. Biol. 13: 5999–6011.
  • Zahler, A. M., W. S. Lane, J. A. Stolk, and M. B. Roth 1992. S/R proteins—a conserved family of pre-messenger-RNA splicing factors. Genes Dev. 6: 837–847.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.