11
Views
11
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Hydrophobic Segment within the 81-Amino-Acid Domain of TFIIIA from Saccharomyces cerevisiae Is Essential for Its Transcription Factor Activity

&
Pages 420-432 | Received 27 Aug 1997, Accepted 28 Oct 1997, Published online: 28 Mar 2023

REFERENCES

  • Almlöf, T., J.-A. Gustafsson, and A. P. H. Wright 1997. Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor. Mol. Cell. Biol. 17: 934–945.
  • Arakawa, H., H. Nagase, N. Hayashi, M. Ogawa, M. Nagata, T. Fujiwara, E. Takahashi, S. Shin, and Y. Nakamura 1995. Molecular cloning, characterization, and chromosomal mapping of a novel human gene (GTF3A) that is highly homologous to Xenopus transcription factor IIIA. Cytogenet. Cell Genet. 70: 235–238.
  • Archambault, J., C. A. Milne, K. T. Schappert, B. Baum, J. D. Friesen, and J. Segall 1992. The deduced sequence of the transcription factor TFIIIA from Saccharomyces cerevisiae reveals extensive divergence from Xenopus TFIIIA. J. Biol. Chem. 267: 3282–3288.
  • Archambault, J., K. T. Schappert, and J. D. Friesen 1990. A suppressor of an RNA polymerase II mutation of Saccharomyces cerevisiae encodes a subunit common to RNA polymerases I, II, and III. Mol. Cell. Biol. 10: 6123–6131.
  • Bartholomew, B., G. A. Kassavetis, B. R. Braun, and E. P. Geiduschek 1990. The subunit structure of Saccharomyces cerevisiae transcription factor IIIC probed with a novel photocrosslinking reagent. EMBO J. 9: 2197–2205.
  • Bartholomew, B., G. A. Kassavetis, and E. P. Geiduschek 1991. Two components of Saccharomyces cerevisiae transcription factor IIIB (TFIIIB) are stereospecifically located upstream of a tRNA gene and interact with the second-largest subunit of TFIIIC. Mol. Cell. Biol. 11: 5181–5189.
  • Blair, W. S., H. P. Bogerd, S. J. Madore, and B. R. Cullen 1994. Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol. Cell. Biol. 14: 7226–7234.
  • Bogenhagen, D. F. 1985. The intragenic control region of the Xenopus 5S RNA gene contains two factor A binding domains that must be aligned properly for efficient transcription initiation. J. Biol. Chem. 260: 6466–6471.
  • Braun, B. R., B. Bartholomew, G. A. Kassavetis, and E. P. Geiduschek 1992. Topography of transcription factor complexes on the Saccharomyces cerevisiae 5S RNA gene. J. Mol. Biol. 228: 1063–1077.
  • Braun, B. R., D. L. Riggs, G. A. Kassavetis, and E. P. Geiduschek 1989. Multiple states of protein-DNA interaction in the assembly of transcription complexes on Saccharomyces cerevisiae 5S ribosomal RNA genes. Proc. Natl. Acad. Sci. USA 86: 2530–2534.
  • Buratowski, S., and H. Zhou 1992. A suppressor of TBP mutations encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71: 221–230.
  • Camier, S., A.-M. Dechampesme, and A. Sentenac 1995. The only essential function of TFIIIA in yeast is the transcription of the 5S rRNA genes. Proc. Natl. Acad. Sci. USA 92: 9338–9342.
  • Challice, J. M., and J. Segall 1989. Transcription of the 5S rRNA gene of Saccharomyces cerevisiae requires a promoter element at +1 and a 14-base pair internal control region. J. Biol. Chem. 264: 20060–20067.
  • Chang, J., D.-H. Kim, S. W. Lee, K. Y. Choi, and Y. C. Sung 1995. Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein. J. Biol. Chem. 270: 25014–25019.
  • Clackson, T., and J. A. Wells 1995. A hot spot of binding energy in a hormone-receptor interface. Science 267: 383–386.
  • Clemens, K. R., X. Liao, V. Wolf, P. E. Wright, and J. M. Gottesfeld 1992. Definition of the binding sites of individual zinc fingers in the transcription factor IIIA-5S RNA gene complex. Proc. Natl. Acad. Sci. USA 89: 10822–10826.
  • Clemens, K. R., V. Wolf, S. J. McBryant, P. Zhang, X. Liao, P. E. Wright, and J. M. Gottesfeld 1993. Molecular basis for specific recognition of both RNA and DNA by a specific zinc finger protein. Science 260: 530–533.
  • Colbert, T., and S. Hahn 1992. A yeast TFIIB-related factor involved in RNA polymerase III transcription. Genes Dev. 6: 1940–1949.
  • Cress, W. D., and S. J. Triezenberg 1991. Critical structural elements of the VP16 transcriptional activation domain. Science 251: 87–90.
  • Cunningham, B. C., and J. A. Wells 1989. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244: 1081–1085.
  • Del Rio, S., and D. R. Setzer 1993. The role of zinc fingers in transcriptional activation by transcription factor IIIA. Proc. Natl. Acad. Sci. USA 90: 168–172.
  • de Vos, A. M., M. Ultsch, and A. A. Kossiakoff 1992. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255: 306–312.
  • Drew, P. D., J. W. Nagle, R. D. Canning, K. Ozato, W. E. Biddison, and K. G. Becker 1995. Cloning and expression analysis of a human cDNA homologous to Xenopus TFIIIA. Gene 159: 215–218.
  • Drysdale, C. M., E. Duenas, B. M. Jackson, U. Reusser, G. H. Braus, and A. G. Hinnebusch 1995. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol. Cell. Biol. 15: 1220–1233.
  • Engelke, D. R., S.-Y. Ng, B. S. Shastry, and R. G. Roeder 1980. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19: 717–728.
  • Fairall, L., and D. Rhodes 1992. A new approach to the analysis of DNase I footprinting data and its application to the TFIIIA/5S DNA complex. Nucleic Acids Res. 20: 4727–4731.
  • Gabrielsen, O. S., and A. Sentenac 1991. RNA polymerase III (C) and its transcription factors. Trends Biochem. Sci. 16: 412–416.
  • Gaskins, C. J., and J. S. Hanas 1990. Sequence variation in transcription factor IIIA. Nucleic Acids Res. 18: 2117–2123.
  • Geiduschek, E. P., and G. A. Kassavetis RNA polymerase III transcription complexes Transcriptional regulation In: McKnight, S. L., and K. R. Yamamoto11992247–280Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Geitz, D., A. St. Jean, R. A. Woods, and R. H. Schiestl 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425.
  • Gill, G., E. Pascal, Z. H. Tseng, and R. Tjian 1994. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc. Natl. Acad. Sci. USA 91: 192–196.
  • Ginsberg, A. M., B. O. King, and R. G. Roeder 1984. Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 39: 479–489.
  • Hansen, P. K., J. H. Christensen, J. Nyborg, O. Lillelund, and H. C. Thøgerson 1993. Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four, or five zinc-finger domains. J. Mol. Biol. 233: 191–202.
  • Hardwick, J. M., L. Tse, N. Applegren, J. Nicholas, and M. A. Veliuona 1992. The Epstein-Barr virus R transactivator (Rta) contains a complex, potent activation domain with properties different from those of VP16. J. Virol. 66: 5500–5508.
  • Hayes, J. J., and K. R. Clemens 1992. Location and contacts between individual zinc fingers of Xenopus laevis transcription factor IIIA and the internal control region of a 5S RNA gene. Biochemistry 31: 11600–11605.
  • Hayes, J. J., and T. D. Tullius 1992. Structure of the TFIIIA-DNA complex. J. Mol. Biol. 227: 407–417.
  • Heery, D. M., E. Kalkhoven, S. Hoare, and M. G. Parker 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature (London) 387: 733–736.
  • Hepworth, S. R., L. K. Ebisuzaki, and J. Segall 1995. A 15-base-pair element activates the SPS4 gene midway through sporulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 3934–3944.
  • Higuchi, R. 1990. Recombinant PCR PCR protocols: a guide to methods and applications. In: Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White177–183Academic Press, San Diego, Calif.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.
  • Ingles, C. J., M. Shales, W. D. Cress, S. J. Triezenberg, and J. Greenblatt 1991. Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature (London) 351: 588–590.
  • Jackson, B. M., C. M. Drysdale, K. Natarajan, and A. G. Hinnebusch 1996. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Mol. Cell. Biol. 16: 5557–5571.
  • Joazeiro, C. A. P., G. A. Kassavetis, and E. P. Geiduschek 1996. Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. Genes Dev. 10: 725–739.
  • Jones, S., and J. M. Thornton 1996. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93: 13–20.
  • Kassavetis, G. A., B. R. Braun, L. H. Nguyen, and E. P. Geiduschek 1990. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60: 235–245.
  • Kassavetis, G. A., S. T. Nguyen, R. Kobayashi, A. Kumar, E. P. Geiduschek, and M. Pisano 1995. Cloning, expression, and function of TFC5, the gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor TFIIIB. Proc. Natl. Acad. Sci. USA 92: 9786–9790.
  • Kassavetis, G. A., D. L. Riggs, R. Negri, L. H. Nguyen, and E. P. Geiduschek 1989. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol. Cell. Biol. 9: 2551–2566.
  • Kussie, P. H., S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, and N. P. Pavletich 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948–953.
  • Lagna, G., R. Kovelman, J. Sukegawa, and R. G. Roeder 1994. Cloning and characterization of an evolutionarily divergent DNA-binding subunit of mammalian TFIIIC. Mol. Cell. Biol. 14: 3053–3064.
  • Lefebvre, O., C. Carles, C. Conesa, R. N. Swanson, F. Bouet, M. Riva, and A. Sentenac 1992. TFC3: gene encoding the B-block binding subunit of the yeast transcription factor IIIC. Proc. Natl. Acad. Sci. USA 89: 10512–10516.
  • L’Etoile, N. D., M. L. Fahnestock, Y. Shen, R. Aebersold, and A. J. Berk 1994. Human transcription factor IIIC box B binding subunit. Proc. Natl. Acad. Sci. USA 91: 1652–1656.
  • Leung, D. W., E. Chen, and D. V. Goeddel 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1: 11–15.
  • Liao, X., K. R. Clemens, L. Tennant, P. E. Wright, and J. M. Gottesfeld 1992. Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5S RNA gene. J. Mol. Biol. 223: 857–871.
  • Lin, J., J. Chen, B. Elennbaas, and A. J. Levine 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8: 1235–1246.
  • López-de-León, A., M. Librizzi, K. Puglia, and I. M. Willis 1992. PCF4 encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71: 211–220.
  • Lu, H., and A. J. Levine 1995. Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc. Natl. Acad. Sci. USA 92: 5154–5158.
  • Mao, X., and M. K. Darby 1993. A position-dependent transcription-activating domain in TFIIIA. Mol. Cell. Biol. 13: 7496–7506.
  • McBryant, S. J., B. Gedulin, K. R. Clemens, P. E. Wright, and J. M. Gottesfeld 1996. Assessment of major and minor groove DNA interactions by the zinc fingers of Xenopus transcription factor IIIA. Nucleic Acids Res. 24: 2567–2574.
  • Miller, J., A. D. McLachlan, and A. Klug 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4: 1609–1614.
  • Milne, C. A. 1994. Ph.D. thesis. University of Toronto, Toronto, Ontario, Canada.
  • Milne, C. A., and J. Segall 1993. Mapping regions of yeast transcription factor IIIA required for DNA binding, interaction with transcription factor IIIC, and transcription activity. J. Biol. Chem. 268: 11364–11371.
  • Moorefield, B., and R. G. Roeder 1994. Purification and characterization of human transcription factor IIIA. J. Biol. Chem. 269: 20857–20865.
  • Osborne, M. A., and P. A. Silver 1993. Nucleocytoplasmic transport in the yeast Saccharomyces cerevisiae. Annu. Rev. Biochem. 62: 219–254.
  • Petko, L., and S. Lindquist 1986. Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45: 885–894.
  • Picksley, S. M., B. Vojtesek, A. Sparks, and D. P. Lane 1994. Immunochemical analysis of the interaction of p53 with MDM2; −fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9: 2523–2529.
  • Pieler, T., J. Hamm, and R. G. Roeder 1987. The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell 48: 91–100.
  • Pieler, T., S.-L. Oei, J. Hamm, U. Engelke, and V. A. Erdmann 1985. Functional domains of the Xenopus laevis 5S gene promoter. EMBO J. 4: 3751–3756.
  • Ptashne, M., and A. Gann 1997. Transcriptional activation by recruitment. Nature (London) 386: 569–577.
  • Regier, J. L., F. Shen, and S. J. Triezenberg 1993. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 90: 883–887.
  • Rollins, M. B., S. Del Rio, A. L. Galey, D. R. Setzer, and M. T. Andrews 1993. Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos. Mol. Cell. Biol. 13: 4776–4783.
  • Rowland, O., and J. Segall 1996. Interaction of wild-type and truncated forms of transcription factor IIIA from Saccharomyces cerevisiae with the 5S RNA gene. J. Biol. Chem. 271: 12103–12110.
  • Sakonju, S., D. D. Brown, D. Engelke, S.-Y. Ng, B. S. Shastry, and R. G. Roeder 1981. The binding of a transcription factor to deletion mutants of a 5S ribosomal RNA gene. Cell 23: 665–669.
  • Schena, M., D. Picard, and K. R. Yamamoto 1991. Vectors for constitutive and inducible gene expression in yeast. Methods Enzymol. 194: 389–398.
  • Shastry, B. S. 1996. Transcription factor IIIA (TFIIIA) in the second decade. J. Cell Sci. 109: 535–539.
  • Sikorski, R. S., and J. D. Boeke 1991. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 194: 302–318.
  • Smith, D. R., I. J. Jackson, and D. D. Brown 1984. Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell 37: 645–652.
  • Taylor, M. J., and J. Segall 1985. Characterization of factors and DNA sequences required for the accurate transcription of the Saccharomyces cerevisiae 5S RNA gene. J. Biol. Chem. 260: 4531–4540.
  • Thut, C. J., J.-L. Chen, R. Klemm, and R. Tjian 1995. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267: 100–104.
  • Torchia, J., D. W. Rose, J. Inostroza, Y. Kamei, S. Westin, C. K. Glass, and M. G. Rosenfeld 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature (London) 387: 677–684.
  • Vrana, K. E., M. E. A. Churchill, T. D. Tullius, and D. D. Brown 1988. Mapping functional regions of transcription factor TFIIIA. Mol. Cell. Biol. 8: 1684–1696.
  • Waldschmidt, R., D. Jahn, M. Teichmann, M. Jahn, W. Meissner, and K. H. Seifart 1990. Physical and immunological characterization of human transcription factor IIIA. Eur. J. Biochem. 194: 167–176.
  • Wang, Z., and R. G. Roeder 1995. Structure and function of a human transcription factor TFIIIB subunit that is evolutionarily conserved and contains both TFIIB- and high-mobility-group protein 2-related domains. Proc. Natl. Acad. Sci. USA 92: 7026–7030.
  • Wang, Z., and R. G. Roeder 1997. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev. 11: 1315–1326.
  • Wells, J. A. 1991. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol. 202: 390–411.
  • Wells, J. A. 1996. Binding in the growth hormone receptor complex. Proc. Natl. Acad. Sci. USA 93: 1–6.
  • White, R. J. 1994. RNA polymerase III transcription. Molecular Biology Intelligence Unit, R. G. Landes Company, Austin, Tex.
  • Woychik, N. A., and R. A. Young 1992. Genes encoding transcription factor IIIA and the RNA polymerase common subunit RPB6 are divergently transcribed in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89: 3999–4003.
  • Xiao, H., A. Pearson, B. Coulombe, R. Truant, S. Zhang, J. L. Regier, S. J. Triezenberg, D. Reinberg, O. Flores, C. J. Ingles, and J. Greenblatt 1994. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14: 7013–7024.
  • Yaffe, M. P., and G. Schatz 1984. Two nuclear mutations that block mitochondrial protein import in yeast. Proc. Natl. Acad. Sci. USA 81: 4819–4823.
  • Young, L., R. L. Jernigan, and D. G. Covell 1994. A role for surface hydrophobicity in protein-protein recognition. Protein Sci. 3: 717–729.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.